Australaves

Last updated

Australaves
Temporal range:
Early Eocene - Holocene, 54–0  Ma [1]
O
S
D
C
P
T
J
K
Pg
N
Possibly an earlier origin based on molecular clock [2]
Common kestrel falco tinnunculus.jpg
Kestrel, Falco tinnunculus
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Aves
Clade: Telluraves
Clade: Australaves
Ericson, 2012
Clades

Australaves is a clade of birds, [3] defined in 2012, [4] consisting of the Eufalconimorphae (passerines, parrots and falcons) as well as the Cariamiformes (including seriemas and the extinct "terror birds"). [5] They appear to be the sister group of Afroaves. [5] This clade was defined in the PhyloCode by George Sangster and colleagues in 2022 as "the least inclusive crown clade containing Cariama cristata and Passer domesticus ". [6]

The clade's name, meaning 'southern birds', reflects the group's evolutionary origins in the Southern Hemisphere: passerines and parrots in Australia, and falcons and seriemas in South America. [4]

As in the case of Afroaves, the most basal clades have predatory extant members, suggesting this was the ancestral lifestyle; [7] however, some researchers like Darren Naish are skeptical of this assessment, since some extinct representatives such as the herbivorous Strigogyps led other lifestyles. [8] Basal parrots and falcons are at any rate vaguely crow-like and probably omnivorous. [9]

Australaves

Cladogram of Telluraves relationships based on Kuhl et al. (2020) and Braun & Kimball (2021) [2] [10]

Related Research Articles

Near passerines and higher land-bird assemblage are terms of traditional, pre-cladistic taxonomy that have often been given to tree-dwelling birds or those most often believed to be related to the true passerines owing to morphological and ecological similarities; the group corresponds to some extent with the Anomalogonatae of Alfred Henry Garrod.

<span class="mw-page-title-main">Neognathae</span> Infraclass of birds

Neognathae is an infraclass of birds, called neognaths, within the class Aves of the clade Archosauria. Neognathae includes the majority of living birds; the exceptions being the tinamous and the flightless ratites, which belong instead to the sister taxon Palaeognathae. There are nearly 10,000 living species of neognaths.

<span class="mw-page-title-main">Neoaves</span> Clade of birds

Neoaves is a clade that consists of all modern birds with the exception of Palaeognathae and Galloanserae. This group is defined in the PhyloCode by George Sangster and colleagues in 2022 as "the most inclusive crown clade containing Passer domesticus, but not Gallus gallus". Almost 95% of the roughly 10,000 known species of extant birds belong to the Neoaves.

<span class="mw-page-title-main">Mirandornithes</span> Taxon of birds

Mirandornithes is a clade that consists of flamingos and grebes. Many scholars use the term Phoenicopterimorphae for the superorder containing flamingoes and grebes.

<span class="mw-page-title-main">Aequornithes</span> Clade of birds

Aequornithes, or core water birds, are defined in the PhyloCode as "the least inclusive crown clade containing Pelecanus onocrotalus and Gavia immer".

<span class="mw-page-title-main">Falconiformes</span> Order of birds

The order Falconiformes is represented by the extant family Falconidae and a handful of enigmatic Paleogene species. Traditionally, the other bird of prey families Cathartidae, Sagittariidae (secretarybird), Pandionidae (ospreys), Accipitridae (hawks) were classified in Falconiformes. A variety of comparative genome analyses published since 2008, however, found that falcons are part of a clade of birds called Australaves, which also includes seriemas, parrots and passerines. Within Australaves falcons are more closely related to the parrot-passerine clade than they are to the seriemas. The hawks, vultures and owls are placed in the clade Afroaves.

<span class="mw-page-title-main">Psittacopasseres</span> Clade of birds

Psittacopasseres is a taxon of birds consisting of the Passeriformes and Psittaciformes (parrots). Per Ericson and colleagues, in analysing genomic DNA, revealed a lineage comprising passerines, psittacines and Falconiformes. The group was proposed following an alignment of nuclear intron sequences by Shannon Hackett et al. in 2008. It was formally named as Psittacopasserae in a 2011 Nature Communications article by Alexander Suh and other authors working with Jürgen Schmitz's group, based on genetic analysis of the insertion of retroposons into the genomes of key avian lineages over the course of evolution during the Mesozoic Era. This clade was defined in the PhyloCode by George Sangster and colleagues in 2022 as the least inclusive crown clade containing Psittacus erithacus and Passer domesticus.

<span class="mw-page-title-main">Eufalconimorphae</span> Proposed clade of birds

Eufalconimorphae is a proposed clade of birds, consisting of passerines, parrots, falcons, caracaras, and forest falcons. It has whole-genome DNA support. This clade was defined in the PhyloCode by George Sangster and colleagues in 2022 as "the least inclusive crown clade containing Falco subbuteo and Passer domesticus". Eufalconimorphae birds are characterized by their strong and hooked beaks, sharp talons, and powerful wings. They have excellent eyesight, which allows them to spot their prey from great distances. The Eufalconimorphae is noted to produce aerodynamic force during the upstroke of flight to help create a vertical flight pattern.

<span class="mw-page-title-main">Afroaves</span> Clade of birds

Afroaves is a clade of birds, consisting of the kingfishers and kin (Coraciiformes), woodpeckers and kin (Piciformes), hornbills and kin (Bucerotiformes), trogons (Trogoniformes), cuckoo roller (Leptosomiformes), mousebirds (Coliiformes), owls (Strigiformes) and raptors (Accipitriformes). The most basal clades are predatory, suggesting the last common ancestor of Afroaves was also a predatory bird. This group was defined in the PhyloCode by George Sangster and colleagues in 2022 as "the least inclusive crown clade containing Accipiter nisus, Colius colius, and Picus viridis, but not Passer domesticus".

<span class="mw-page-title-main">Telluraves</span> Clade of birds

Telluraves is a recently defined clade of birds defined by their arboreality. Based on most recent genetic studies, the clade unites a variety of bird groups, including the australavians as well as the afroavians. This grouping was defined in the PhyloCode by George Sangster and colleagues in 2022 as "the least inclusive crown clade containing Accipiter nisus and Passer domesticus". They appear to be the sister group of the Phaethoquornithes.

<span class="mw-page-title-main">Passerea</span> Clade of birds

Passerea is a clade of neoavian birds that was proposed by Jarvis et al. (2014). Their genomic analysis recovered two major clades within Neoaves, Passerea and Columbea, and concluded that both clades appear to have many ecologically driven convergent traits.

<span class="mw-page-title-main">Eurypygimorphae</span> Clade of birds

Eurypygimorphae or Phaethontimorphae is a clade of birds that contains the orders Phaethontiformes (tropicbirds) and Eurypygiformes recovered by genome analysis. The relationship was first identified in 2013 based on their nuclear genes. This group was defined in the PhyloCode by George Sangster and colleagues in 2022 as "the least inclusive crown clade containing Phaethon aethereus, Eurypyga helias, and Rhynochetos jubatus". Historically these birds were placed at different parts of the tree, with tropicbirds in Pelecaniformes and the kagu and sunbittern in Gruiformes. Some genetic analyses have placed the eurypygimorph taxa in the controversial and obsolete clade Metaves, with uncertain placement within that group. More recent molecular studies support their grouping together in Eurypygimorphae, which is usually recovered as the sister taxon to Aequornithes within Ardeae.

<span class="mw-page-title-main">Phaethoquornithes</span> Taxon of birds

Phaethoquornithes is a clade of birds that contains Eurypygimorphae and Aequornithes, which was first recovered by genome analysis in 2014. Members of Eurypygimorphae were originally classified in the obsolete group Metaves, and Aequornithes were classified as the sister taxon to Musophagiformes or Gruiformes.

<span class="mw-page-title-main">Coraciimorphae</span> Clade of birds

Coraciimorphae is a clade of birds that contains the order Coliiformes (mousebirds) and the clade Cavitaves. The name however was coined in the 1990s by Sibley and Ahlquist based on their DNA-DNA hybridization studies conducted in the late 1970s and throughout the 1980s. However their Coraciimorphae only contains Trogoniformes and Coraciiformes. Coraciimorphae was defined in the PhyloCode by George Sangster and colleagues in 2022 as "the least inclusive crown clade containing Colius colius and Picus viridis, but not Accipiter nisus or Passer domesticus".

<span class="mw-page-title-main">Eucavitaves</span> Clade of birds

Eucavitaves is a clade that contains the order Trogoniformes (trogons) and the clade Picocoraciae. The group was defined in the PhyloCode by George Sangster and colleagues in 2022 as "the least inclusive crown clade containing Trogon viridis and Picus viridis". The name refers to the fact that the majority of them nest in cavities.

<span class="mw-page-title-main">Cavitaves</span> Clade of birds

Cavitaves is a clade that contains the order Leptosomiformes and the clade Eucavitaves. This group was defined in the PhyloCode by George Sangster and colleagues in 2022 as "the least inclusive crown clade containing Leptosomus discolor and Picus viridis". The name refers to the fact that the majority of them nest in cavities.

<span class="mw-page-title-main">Picocoraciae</span> Clade of birds

Picocoraciae is a clade that contains the order Bucerotiformes and the clade Picodynastornithes supported by various genetic analysis and morphological studies. While these studies supported a sister grouping of Coraciiformes and Piciformes, a large scale, sparse supermatrix has suggested alternative sister relationship between Bucerotiformes and Piciformes instead. This group was defined in the PhyloCode by George Sangster and colleagues in 2022 as "the least inclusive crown clade containing Buceros rhinoceros, Coracias garrulus, and Picus viridis".

<span class="mw-page-title-main">Columbimorphae</span> Clade of birds

Columbimorphae is a clade/superorder discovered by genome analysis that includes birds of the orders Columbiformes, Pterocliformes (sandgrouse), and Mesitornithiformes (mesites). This group was defined in the PhyloCode by George Sangster and colleagues in 2022 as "the least inclusive crown clade containing Columba oenas, Mesitornis variegatus, and Pterocles alchata". Previous analyses had also recovered this grouping, although the exact relationships differed. Some studies indicated a sister relationship between sandgrouse and pigeons while other studies favored a sister grouping of mesites and sandgrouse instead. This sister relationship of the sandgrouses and mesites was named by George Sangster and colleagues in 2022 as the clade Pteroclimesites and defined in the PhyloCode as "the least inclusive crown clade containing Mesitornis variegatus and Pterocles alchata".

<span class="mw-page-title-main">Picodynastornithes</span> Clade of birds

Picodynastornithes is a clade that contains the orders Coraciiformes and Piciformes. This grouping also has current and historical support from molecular and morphological studies. This group was defined in the PhyloCode by George Sangster and colleagues in 2022 as "the least inclusive crown clade containing Coracias garrulus, Alcedo atthis, and Picus viridis".

<span class="mw-page-title-main">Pelecanimorphae</span> Clade of birds

Pelecanimorphae is a clade of aequornithean birds that comprises the orders Ciconiiformes, Suliformes and Pelecaniformes. In the past the name has been used as a homonym for Pelecaniformes. Pelecanimorphae is defined in the PhyloCode by George Sangster and colleagues in 2022 as "the least inclusive clade containing Pelecanus onocrotalus, Sula leucogaster, and Ciconia ciconia". The less inclusive clade Pelecanes was named by Sangster et al, 2022 to unite Pelecaniformes and Suliformes and defined in the PhyloCode as the "least inclusive crown clade containing Pelecanus onocrotalus and Sula leucogaster".

References

  1. Boles, Walter E. (1997). "Fossil songbirds (Passeriformes) from the Early Eocene of Australia". Emu . 97 (1): 43–50. Bibcode:1997EmuAO..97...43B. doi:10.1071/MU97004.
  2. 1 2 Kuhl, H.; Frankl-Vilches, C.; Bakker, A.; Mayr, G.; Nikolaus, G.; Boerno, S.T.; Klages, S.; Timmermann, B.; Gahr, M. (2021). "An unbiased molecular approach using 3′-UTRs resolves the avian family-level tree of life". Molecular Biology and Evolution. 38 (1): 108–127. doi: 10.1093/molbev/msaa191 . PMC   7783168 . PMID   32781465.
  3. Kimball RT, Wang N, Heimer-McGinn V, Ferguson C, Braun EL (2013). "Identifying localized biases in large datasets: A case study using the Avian Tree of Life". Molecular Phylogenetics and Evolution. 69 (3). Mol Phylogenet Evol: 1021–1032. Bibcode:2013MolPE..69.1021K. doi:10.1016/j.ympev.2013.05.029. PMID   23791948.
  4. 1 2 Ericson, P. G. (2012). "Evolution of terrestrial birds in three continents: biogeography and parallel radiations". Journal of Biogeography. 39 (5): 813–824. Bibcode:2012JBiog..39..813E. doi:10.1111/j.1365-2699.2011.02650.x. JSTOR   41496062. S2CID   85599747.
  5. 1 2 Prum, Richard O.; Berv, Jacob S.; Dornburg, Alex; Field, Daniel J.; Townsend, Jeffrey P.; Lemmon, Emily Moriarty; Lemmon, Alan R. (2015). "A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing". Nature. 526 (7574): 569–573. Bibcode:2015Natur.526..569P. doi:10.1038/nature15697. ISSN   1476-4687. PMID   26444237 . Retrieved 2024-07-23.
  6. Sangster, George; Braun, Edward L.; Johansson, Ulf S.; Kimball, Rebecca T.; Mayr, Gerald; Suh, Alexander (2022-01-01). "Phylogenetic definitions for 25 higher-level clade names of birds" (PDF). Avian Research. 13: 100027. Bibcode:2022AvRes..1300027S. doi: 10.1016/j.avrs.2022.100027 . ISSN   2053-7166.
  7. Jarvis, E. D.; Mirarab, S.; Aberer, A. J.; Li, B.; Houde, P.; et al. (2014). "Whole-genome analyses resolve early branches in the tree of life of modern birds" (PDF). Science. 346 (6215): 1320–1331. Bibcode:2014Sci...346.1320J. doi:10.1126/science.1253451. hdl:10072/67425. PMC   4405904 . PMID   25504713. Archived from the original (PDF) on 2015-02-24. Retrieved 2015-08-29.
  8. Mayr, Gerald; Richter, Gotthard (2011). "Exceptionally preserved plant parenchyma in the digestive tract indicates a herbivorous diet in the Middle Eocene bird Strigogyps sapea (Ameghinornithidae)". Paläontologische Zeitschrift. 85 (3): 303–307. Bibcode:2011PalZ...85..303M. doi:10.1007/s12542-010-0094-5. ISSN   0031-0220.
  9. Martin, Larry D. (2010-12-15). "Paleogene avifauna of the Holarctic". Vertebrata PalAsiatica. 48 (4): 367–374. ISSN   2096-9899.
  10. Braun, Edward L.; Kimball, Rebecca T. (2021-01-05). "Data Types and the Phylogeny of Neoaves". Birds. 2 (1): 1–22. doi: 10.3390/birds2010001 . ISSN   2673-6004.