Beyond CMOS

Last updated

Beyond CMOS refers to the possible future digital logic technologies beyond the scaling limits of CMOS technology. [1] [2] [3] [4] which limits device density and speeds due to heating effects. [5]

Contents

Beyond CMOS is the name of one of the 7 focus groups in ITRS 2.0 (2013) and in its successor, the International Roadmap for Devices and Systems.

CPU Clock Scaling Clock CPU Scaling.jpg
CPU Clock Scaling

CPUs using CMOS were released from 1986 (e.g. 12 MHz Intel 80386). As CMOS transistor dimensions were shrunk the clock speeds also increased. Since about 2004 CMOS CPU clock speeds have leveled off at about 3.5 GHz.

A graph of efficiency gains possible under 'more Moore' (ie, further improvements to current technology) and 'Beyond CMOS' (ie, a paradigm shift in technology). From the International Roadmap for Devices and Systems Beyond CMOS IRDS.jpg
A graph of efficiency gains possible under 'more Moore' (ie, further improvements to current technology) and 'Beyond CMOS' (ie, a paradigm shift in technology). From the International Roadmap for Devices and Systems

CMOS devices sizes continue to shrink – see Intel tick–tock and ITRS:

It is not yet clear if CMOS transistors will still work below 3 nm. [4] See 3 nanometer.

Comparisons of technology

About 2010 the Nanoelectronic Research Initiative (NRI) studied various circuits in various technologies. [2]

Nikonov benchmarked (theoretically) many technologies in 2012, [2] and updated it in 2014. [8] The 2014 benchmarking included 11 electronic, 8 spintronic, 3 orbitronic, 2 ferroelectric, and 1 straintronics technology. [8]

The 2015 ITRS 2.0 report included a detailed chapter on Beyond CMOS, [9] covering RAM and logic gates.

Some areas of investigation

Superconducting computing and RSFQ

Superconducting computing includes several beyond-CMOS technologies that use superconducting devices, namely Josephson junctions, for electronic signals processing and computing. One variant called rapid single-flux quantum (RSFQ) logic was considered promising by the NSA in a 2005 technology survey despite the drawback that available superconductors require cryogenic temperatures. More energy-efficient superconducting logic variants have been developed since 2005 and are being considered for use in large scale computing. [12] [13]

See also

Related Research Articles

<span class="mw-page-title-main">Integrated circuit</span> Electronic circuit formed on a small, flat piece of semiconductor material

An integrated circuit, also known as a microchip or IC, is a small electronic device made up of multiple interconnected electronic components such as transistors, resistors, and capacitors. These components are etched onto a small piece of semiconductor material, usually silicon. Integrated circuits are used in a wide range of electronic devices, including computers, smartphones, and televisions, to perform various functions such as processing and storing information. They have greatly impacted the field of electronics by enabling device miniaturization and enhanced functionality.

<span class="mw-page-title-main">Moore's law</span> Observation on the growth of integrated circuit capacity

Moore's law is the observation that the number of transistors in an integrated circuit (IC) doubles about every two years. Moore's law is an observation and projection of a historical trend. Rather than a law of physics, it is an empirical relationship linked to gains from experience in production.

<span class="mw-page-title-main">CMOS</span> Technology for constructing integrated circuits

Complementary metal–oxide–semiconductor is a type of metal–oxide–semiconductor field-effect transistor (MOSFET) fabrication process that uses complementary and symmetrical pairs of p-type and n-type MOSFETs for logic functions. CMOS technology is used for constructing integrated circuit (IC) chips, including microprocessors, microcontrollers, memory chips, and other digital logic circuits. CMOS technology is also used for analog circuits such as image sensors, data converters, RF circuits, and highly integrated transceivers for many types of communication.

Spintronics, also known as spin electronics, is the study of the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, in solid-state devices. The field of spintronics concerns spin-charge coupling in metallic systems; the analogous effects in insulators fall into the field of multiferroics.

In electronics, rapid single flux quantum (RSFQ) is a digital electronic device that uses superconducting devices, namely Josephson junctions, to process digital signals. In RSFQ logic, information is stored in the form of magnetic flux quanta and transferred in the form of Single Flux Quantum (SFQ) voltage pulses. RSFQ is one family of superconducting or SFQ logic. Others include Reciprocal Quantum Logic (RQL), ERSFQ – energy-efficient RSFQ version that does not use bias resistors, etc. Josephson junctions are the active elements for RSFQ electronics, just as transistors are the active elements for semiconductor electronics. RSFQ is a classical digital, not quantum computing, technology.

<span class="mw-page-title-main">Fin field-effect transistor</span> Type of non-planar transistor

A fin field-effect transistor (FinFET) is a multigate device, a MOSFET built on a substrate where the gate is placed on two, three, or four sides of the channel or wrapped around the channel, forming a double or even multi gate structure. These devices have been given the generic name "FinFETs" because the source/drain region forms fins on the silicon surface. The FinFET devices have significantly faster switching times and higher current density than planar CMOS technology.

The International Technology Roadmap for Semiconductors (ITRS) is a set of documents that was produced by a group of experts in the semiconductor industry. These experts were representative of the sponsoring organisations, including the Semiconductor Industry Associations of Taiwan, South Korea, the United States, Europe, Japan, and China.

The 14 nm process refers to the MOSFET technology node that is the successor to the 22 nm node. The 14 nm was so named by the International Technology Roadmap for Semiconductors (ITRS). Until about 2011, the node following 22 nm was expected to be 16 nm. All 14 nm nodes use FinFET technology, a type of multi-gate MOSFET technology that is a non-planar evolution of planar silicon CMOS technology.

<span class="mw-page-title-main">Multigate device</span> MOS field-effect transistor with more than one gate

A multigate device, multi-gate MOSFET or multi-gate field-effect transistor (MuGFET) refers to a metal–oxide–semiconductor field-effect transistor (MOSFET) that has more than one gate on a single transistor. The multiple gates may be controlled by a single gate electrode, wherein the multiple gate surfaces act electrically as a single gate, or by independent gate electrodes. A multigate device employing independent gate electrodes is sometimes called a multiple-independent-gate field-effect transistor (MIGFET). The most widely used multi-gate devices are the FinFET and the GAAFET, which are non-planar transistors, or 3D transistors.

Nanocircuits are electrical circuits operating on the nanometer scale. This is well into the quantum realm, where quantum mechanical effects become very important. One nanometer is equal to 10−9 meters or a row of 10 hydrogen atoms. With such progressively smaller circuits, more can be fitted on a computer chip. This allows faster and more complex functions using less power. Nanocircuits are composed of three different fundamental components. These are transistors, interconnections, and architecture, all fabricated on the nanometer scale.

The MASTAR is an analytical model of Metal-Oxide Semiconductor Field-Effect Transistors, developed using the voltage-doping transformation (VDT) technique. MASTAR offers good accuracy and continuity in current and its derivatives in all operation regimes of the MOSFET devices. The model has been successfully used in CAD/EDA simulation tools.

In semiconductor manufacturing, the International Roadmap for Devices and Systems defines the "5 nm" process as the MOSFET technology node following the "7 nm" node. In 2020, Samsung and TSMC entered volume production of "5 nm" chips, manufactured for companies including Apple, Marvell, Huawei and Qualcomm.

Adrian (Mihai) Ionescu is a Romanian and Swiss physicist and academic. He is full Professor at the Swiss Federal Institute of Technology in Lausanne (EPFL), where he is founder and director of the Nanoelectronic Devices Laboratory.

<span class="mw-page-title-main">Ian A. Young</span> American electrical engineer

Ian A. Young is an Intel engineer. Young is a co-author of 50 research papers, and has 71 patents in switched capacitor circuits, DRAM, SRAM, BiCMOS, x86 clocking, Photonics and spintronics.

<span class="mw-page-title-main">Tunnel field-effect transistor</span>

The tunnel field-effect transistor (TFET) is an experimental type of transistor. Even though its structure is very similar to a metal–oxide–semiconductor field-effect transistor (MOSFET), the fundamental switching mechanism differs, making this device a promising candidate for low power electronics. TFETs switch by modulating quantum tunneling through a barrier instead of modulating thermionic emission over a barrier as in traditional MOSFETs. Because of this, TFETs are not limited by the thermal Maxwell–Boltzmann tail of carriers, which limits MOSFET drain current subthreshold swing to about 60 mV/decade of current at room temperature.

<span class="mw-page-title-main">IEEE Rebooting Computing</span> Initiative to rethink the concept of computing

The Task Force on Rebooting Computing (TFRC), housed within IEEE Computer Society, is the new home for the IEEE Rebooting Computing Initiative. Founded in 2013 by the IEEE Future Directions Committee, Rebooting Computing has provided an international, interdisciplinary environment where experts from a wide variety of computer-related fields can come together to explore novel approaches to future computing. IEEE Rebooting Computing began as a global initiative launched by IEEE that proposes to rethink the concept of computing through a holistic look at all aspects of computing, from the device itself to the user interface. As part of its work, IEEE Rebooting Computing provides access to various resources like conferences and educational events, feature and scholarly articles, reports, and videos.

Magneto-electric spin-orbit (MESO) is a technology designed for constructing scalable integrated circuits, that works with a different operating principle than CMOS devices such as MOSFETs, proposed by Intel, that is compatible with CMOS device manufacturing techniques and machinery.

In semiconductor manufacturing, the 2 nm process is the next MOSFET die shrink after the 3 nm process node. As of May 2022, TSMC plans to begin risk 2 nm production at the end of 2024 and mass production in 2025; Intel forecasts production in 2024, and Samsung in 2025.

Sasikanth Manipatruni is an American engineer and inventor in the fields of Computer engineering, Integrated circuit technology, Materials Engineering and semiconductor device fabrication. Manipatruni contributed to developments in silicon photonics, spintronics and quantum materials.

References

  1. "Extending the road beyond CMOS. Hutchby 2002" (PDF). Archived (PDF) from the original on 2022-12-06. Retrieved 2023-04-16.
  2. 1 2 3 Nikonov, Dmitri E.; Young, Ian A. (September 2012). "Overview of Beyond-CMOS Devices and A Uniform Methodology for Their Benchmarking". arXiv: 1302.0244 [cond-mat.mes-hall].
  3. Bernstein; et al. (2011). "Device and Architecture Outlook for Beyond CMOS Switches". Archived from the original on 2015-02-22. Retrieved 2015-02-22.{{cite journal}}: Cite journal requires |journal= (help)
  4. 1 2 "Review of Advanced and Beyond CMOS FET Technologies for Radio Frequency Circuit Design. Carta 2011" (PDF). Archived from the original (PDF) on 2015-02-23. Retrieved 2015-02-23.
  5. Frank, D.J. (March 2002). "Power-constrained CMOS scaling limits". IBM Journal of Research and Development. 46 (2.3): 235–244. CiteSeerX   10.1.1.84.4043 . doi:10.1147/rd.462.0235.
  6. "Beyond CMOS" (PDF). The International Roadmap for Devices and Systems (2017 ed.). IEEE. 2018. Archived (PDF) from the original on 2018-07-03. Retrieved 2018-07-03.
  7. "Samsung vows to start 10nm chip production in 2016". 23 May 2015. Archived from the original on 16 July 2015. Retrieved 16 July 2015.
  8. 1 2 Nikonov; Young (2015). "Benchmarking of Beyond-CMOS Exploratory – Devices for Logic Integrated Circuits". IEEE Journal on Exploratory Solid-State Computational Devices and Circuits. 1: 3–11. Bibcode:2015IJESS...1....3N. doi: 10.1109/JXCDC.2015.2418033 .
  9. Beyond CMOS (PDF). International Technology Roadmap for Semiconductors 2.0 (2015 ed.). Archived (PDF) from the original on 2023-04-16. Retrieved 2017-06-16.
  10. Manipatruni, Sasikanth; Nikonov, Dmitri E.; Lin, Chia-Ching; Gosavi, Tanay A.; Liu, Huichu; Prasad, Bhagwati; Huang, Yen-Lin; Bonturim, Everton; Ramesh, Ramamoorthy; Young, Ian A. (2018-12-03). "Scalable energy-efficient magnetoelectric spin–orbit logic". Nature. 565 (7737): 35–42. doi:10.1038/s41586-018-0770-2. ISSN   0028-0836. PMID   30510160. S2CID   256769872.
  11. Seabaugh (September 2013). "The Tunneling Transistor". IEEE Spectrum. IEEE. 50 (10): 35–62. doi:10.1109/MSPEC.2013.6607013. S2CID   2729197. Archived from the original on 2021-06-29. Retrieved 2023-04-16.
  12. Holmes, D.S.; Ripple, A.L.; Manheimer, M.A. (June 2013). "Energy-efficient superconducting computing—power budgets and requirements". IEEE Trans. Appl. Supercond. 23 (3). 1701610. Bibcode:2013ITAS...2301610H. doi:10.1109/TASC.2013.2244634. S2CID   20374012. Archived from the original on 2022-10-10. Retrieved 2023-04-16.
  13. Holmes, D.S.; Kadin, A.M.; Johnson, M.W. (December 2015). "Superconducting Computing in Large-Scale Hybrid Systems". Computer. 48 (12): 34–42. doi:10.1109/MC.2015.375. S2CID   26578755. Archived from the original on 2022-12-25. Retrieved 2023-04-16.

Further reading