Black horse

Last updated
Black
Bridon Belfrey, RID, Irish Draught Stallion.jpg
Black Irish Draught horse
VariantsFading, non-fading, possibly genetic
Genotype
Base color Extension "E"
Modifying genesnone
DescriptionSolid black base color uniform over entire body other than markings
SkinBlack
EyesBrown

Black is a hair coat color of horses in which the entire hair coat is black. Black is a relatively uncommon coat color, and it is not uncommon to mistake dark chestnuts or bays for black.

Contents

True black horses have dark brown eyes, black skin, and wholly black hair coats without any areas of permanently reddish or brownish hair. They may have pink skin beneath any white markings under the areas of white hair, and if such white markings include one or both eyes, the eyes may be blue. Many black horses "sun bleach" with exposure to the elements and sweat, and therefore their coats may lose some of their rich black character and may even resemble bay or seal brown, though examination of the color of hair around the eyes, muzzle and genitals often will determine color. Black horses that do not sun bleach are called "true" blacks.

Some breeds of horses, such as the Friesian horse, Murgese and Ariegeois (or Merens), are almost exclusively black. Black is also common in the Fell pony, Dales pony, Ostfriesen and Alt-Oldenburger, Kladruber, and Groningen.

Visual identification

Black horse (top) with sun bleached mane compared against dark bay or seal brown horse (bottom) with reddish hairs around the eye. Brownvblack.JPG
Black horse (top) with sun bleached mane compared against dark bay or seal brown horse (bottom) with reddish hairs around the eye.

When identifying the base color of a horse, it is important to disregard all pink-skinned white markings. White markings and patterns such as pinto and leopard have no bearing on the underlying base coat color of the animal.

Black foals are typically born a mousy gray but can be darker shades. As many foals have primitive markings at birth, some black foals are mistaken for grullo or even bay dun; the primitive markings on a black foal will, however, disappear as the black hair coat grows in. Black foals have dark skin and eyes at birth. An adult-like black foal coat often indicates that the foal will gray, if the foal has at least one gray parent. Graying can be confirmed by the presence of white hairs around the eyes and muzzle. Gray Lipizzaner horses are frequently born black.

As seen in this photo, black foals are often born a "mousy" color that sheds off as they get older Dales Pony Mare & Foal at the Dales Pony Society Breed Show.jpg
As seen in this photo, black foals are often born a "mousy" color that sheds off as they get older

Black adult horses are easier to identify, as the coat must be entirely black, even if superficially sun bleached. A sun bleached black may be confused with a dark bay, but a trained eye can distinguish between them, particularly by examining the fine hairs around the eyes and muzzle. When a black horse is sun-bleached, the mane and tail often sun bleach most prominently, and the rest of the coat may have a rusty tinge. A sun-bleached black may also be mistaken for the less common smoky black, but can be distinguished by pedigree analysis or DNA testing.

Black mimics

This black Shetland Pony foal was born very dark and will likely gray like its mother Killesberg Shetlandfohlen.jpg
This black Shetland Pony foal was born very dark and will likely gray like its mother

Genetic identification

A horse with a black base coat overlain by tobiano-patterned white markings, called a piebald in some countries. Irish Tinker horse 2.JPG
A horse with a black base coat overlain by tobiano-patterned white markings, called a piebald in some countries.

In the study and discussion of equine coat color genetics, black is considered a "base" color, as is red. This designation makes the effects of other coat color genes easier to understand. Coat colors that are designated "black-based" include grullo (also called blue dun), smoky black, smoky cream, silver black, classic champagne, and blue roan. Sometimes this designation includes the bay family: bay, seal brown, buckskin, bay dun, silver bay, perlino, amber champagne, and bay roan. Horses with a black-based coat may also have added spotting patterns including leopard patterns seen on Appaloosas and the pinto coloring known as piebald.

The genetics behind the black horse are relatively simple. The color black is primarily controlled by two genes: Extension and Agouti. The functional, dominant allele of the extension gene (labeled "E") enables the horse to produce black pigment in the hair. Without this gene (homozygous recessive condition "ee"), the coat is devoid of black pigment and the horse is some shade of red. The functional, dominant allele (or alleles) of the agouti gene (labeled "A") enable the horse to restrict black pigment to certain parts of the coat, notably the legs, mane and tail, allowing the underlying red to show through, resulting in bay coloring. Without this gene (homozygous recessive condition "aa"), any black pigment present is unrestricted, resulting in a uniformly black coat.

Thus a black horse has at least one copy of the functional, dominant "E" allele and two copies of the non-functional, recessive "a" allele. A mature true black horse can be safely said to possess at least one dominant extension gene (EE or Ee); and has no other dominant genes (such as agouti, gray, or any of the dilution factors) that further modify color.

A DNA test, which uses hair with the root intact, has been developed to test for the Extension and Agouti genotypes. However, the terminology can be manipulated. Unfortunately, the extension test is often mislabeled as the "black test", leading to confusion. Neither the extension test nor the agouti test alone can identify a black horse. Together, they can determine that a horse that appears visually black is not actually a dark bay or liver chestnut.

Horses described as "homozygous black" are simply homozygous for the dominant extension gene (EE); they are homozygous "not-red". Such horses are only "guaranteed" to never produce a red foal. The actual horse may carry additional genetic modifiers that could make it bay, buckskin, gray, bay roan, perlino, silver bay, and so on. A visually black horse that is tested "homozygous black" is EE and has no other color modifiers.

However, it has become popular for individuals owning a horse that is homozygous for the extension gene (EE) to claim that the horse will "throw black." But, generally speaking, one horse cannot be guaranteed to "throw black" with all mates. The mate of a true black horse may contribute the a dominant Agouti allele, which will suppress the black coloring and result in a bay foal. If a black is bred to a gray, the ensuing foal may also be gray. Other modifiers present in the mate may produce additional dilution colors or spotting patterns. Nonetheless certain individual pairings with appropriate DNA testing can, in some cases, be guaranteed to produce black.

Related Research Articles

<span class="mw-page-title-main">Roan (color)</span>

Roan is a coat color found in many animals, including horses, cattle, antelope, cat and dogs. It is defined generally as an even mixture of white and pigmented hairs that do not "gray out" or fade as the animal ages. There are a variety of genetic conditions which produce the colors described as "roan" in various species.

<span class="mw-page-title-main">Palomino</span> Genetic color in horses

Palomino is a genetic color in horses, consisting of a gold coat and white mane and tail; the degree of whiteness can vary from bright white to yellow. Genetically, the palomino color is created by a single allele of a dilution gene called the cream gene working on a "red" (chestnut) base coat. Palomino is created by a genetic mechanism of incomplete dominance, hence it is not considered true-breeding. However, most color breed registries that record palomino horses were founded before equine coat color genetics were understood as well as they are today, therefore the standard definition of a palomino is based on the visible coat color, not heritability nor the underlying presence of the dilution gene.

<span class="mw-page-title-main">Bay (horse)</span> Hair coat color of horses

Bay is a hair coat color of horses, characterized by a reddish-brown or brown body color with a black point coloration on the mane, tail, ear edges, and lower legs. Bay is one of the most common coat colors in many horse breeds.

<span class="mw-page-title-main">Point coloration</span> Coloration of animal coat/fur

Point coloration is animal coat coloration with a pale body and relatively darker extremities, i.e. the face, ears, feet, tail, and scrotum. It is most recognized as the coloration of Siamese and related breeds of cat, but can be found in dogs, rabbits, rats, sheep, guinea pigs and horses as well.

<span class="mw-page-title-main">Gray horse</span> Coat color characterized by progressive depigmentation of the colored hairs of the coat

A gray horse has a coat color characterized by progressive depigmentation of the colored hairs of the coat. Most gray horses have black skin and dark eyes; unlike some equine dilution genes and some other genes that lead to depigmentation, gray does not affect skin or eye color. Gray horses may be born any base color, depending on other color genes present. White hairs begin to appear at or shortly after birth and become progressively more prevalent as the horse ages as white hairs become intermingled with hairs of other colors. Graying can occur at different rates—very quickly on one horse and very slowly on another. As adults, most gray horses eventually become completely white, though some retain intermixed light and dark hairs.

<span class="mw-page-title-main">Cream gene</span> Gene for several horse coat colors

The cream gene is responsible for a number of horse coat colors. Horses that have the cream gene in addition to a base coat color that is chestnut will become palomino if they are heterozygous, having one copy of the cream gene, or cremello, if they are homozygous. Similarly, horses with a bay base coat and the cream gene will be buckskin or perlino. A black base coat with the cream gene becomes the not-always-recognized smoky black or a smoky cream. Cream horses, even those with blue eyes, are not white horses. Dilution coloring is also not related to any of the white spotting patterns.

<span class="mw-page-title-main">Champagne gene</span> Simple dominant allele responsible for a number of rare horse coat colors

The champagne gene is a simple dominant allele responsible for a number of rare horse coat colors. The most distinctive traits of horses with the champagne gene are the hazel eyes and pinkish, freckled skin, which are bright blue and bright pink at birth, respectively. The coat color is also affected: any hairs that would have been red are gold, and any hairs that would have been black are chocolate brown. If a horse inherits the champagne gene from either or both parents, a coat that would otherwise be chestnut is instead gold champagne, with bay corresponding to amber champagne, seal brown to sable champagne, and black to classic champagne. A horse must have at least one champagne parent to inherit the champagne gene, for which there is now a DNA test.

<span class="mw-page-title-main">Silver dapple gene</span>

The silver or silver dapple (Z) gene is a dilution gene that affects the black base coat color and is associated with Multiple Congenital Ocular Abnormalities. It will typically dilute a black mane and tail to a silvery gray or flaxen color, and a black body to a chocolaty brown, sometimes with dapples. It is responsible for a group of coat colors in horses called "silver dapple" in the west, or "taffy" in Australia. The most common colors in this category are black silver and bay silver, referring to the respective underlying coat color.

<span class="mw-page-title-main">Equine coat color genetics</span> Genetics behind the equine coat color

Equine coat color genetics determine a horse's coat color. Many colors are possible, but all variations are produced by changes in only a few genes. Bay is the most common color of horse, followed by black and chestnut. A change at the agouti locus is capable of turning bay to black, while a mutation at the extension locus can turn bay or black to chestnut.

<span class="mw-page-title-main">Dun gene</span> Dilution gene

The dun gene is a dilution gene that affects both red and black pigments in the coat color of a horse. The dun gene lightens most of the body while leaving the mane, tail, legs, and primitive markings the shade of the undiluted base coat color. A dun horse always has a dark dorsal stripe down the middle of its back, usually has a darker face and legs, and may have transverse striping across the shoulders or horizontal striping on the back of the forelegs. Body color depends on the underlying coat color genetics. A classic "bay dun" is a gray-gold or tan, characterized by a body color ranging from sandy yellow to reddish brown. Duns with a chestnut base may appear a light tan shade, and those with black base coloration are a smoky gray. Manes, tails, primitive markings, and other dark areas are usually the shade of the undiluted base coat color. The dun gene may interact with all other coat color alleles.

<span class="mw-page-title-main">Chestnut (horse color)</span> Horse coat color

Chestnut is a hair coat color of horses consisting of a reddish-to-brown coat with a mane and tail the same or lighter in color than the coat. Chestnut is characterized by the absolute absence of true black hairs. It is one of the most common horse coat colors, seen in almost every breed of horse.

<span class="mw-page-title-main">Equine coat color</span> Horse coat colors and markings

Horses exhibit a diverse array of coat colors and distinctive markings. A specialized vocabulary has evolved to describe them.

<span class="mw-page-title-main">White horse</span> Horse coat color

A white horse is born predominantly white and stays white throughout its life. A white horse has mostly pink skin under its hair coat, and may have brown, blue, or hazel eyes. "True white" horses, especially those that carry one of the dominant white (W) genes, are rare. Most horses that are commonly referred to as "white" are actually "gray" horses whose hair coats are completely white. Gray horses may be born of any color and their hairs gradually turn white as time goes by and take on a white appearance. Nearly all gray horses have dark skin, except under any white markings present at birth. Skin color is the most common method for an observer to distinguish between mature white and gray horses.

<span class="mw-page-title-main">Sabino horse</span> Color pattern in horses

Sabino describes a distinct pattern of white spotting in horses. In general, Sabino patterning is visually recognized by roaning or irregular edges of white markings, belly spots, white extending past the eyes or onto the chin, white above the knees or hocks, and "splash" or "lacy" marks anywhere on the body. Some sabinos have patches of roan patterning on part of the body, especially the barrel and flanks. Some sabinos may have a dark leg or two, but many have four white legs. Sabino patterns may range from slightly bold face or leg white markings—as little as white on the chin or lower lip—to horses that are fully white.

<span class="mw-page-title-main">Smoky black</span>

Smoky black or just smoky is a hair coat color of horses which appears dark brown to black in color. Smoky black is produced by the action of a heterozygous cream gene on an underlying black coat color. Therefore, smoky black is a member of the cream family of coat color dilutions, and found in horse populations that have other cream-based colors such as palomino, buckskin, perlino, cremello and smoky cream. All smoky blacks must have at least one parent with the cream gene, and a smoky black can only be verified through DNA testing or parentage. Smoky black has been mistaken for faded black, dark bay or brown, grullo or even liver chestnut.

<span class="mw-page-title-main">Seal brown (horse)</span> Hair coat color of horses

Seal brown is a hair coat color of horses characterized by a near-black body color; with black points, the mane, tail and legs; but also reddish or tan areas around the eyes, muzzle, behind the elbow and in front of the stifle. The term is not to be confused with "brown", which is used by some breed registries to refer to either a seal brown horse or to a dark bay without the additional characteristics of seal brown.

<span class="mw-page-title-main">Dominant white</span> Horse coat color and its genetics

Dominant white (W) is a group of genetically related coat color alleles on the KIT gene of the horse, best known for producing an all-white coat, but also able to produce various forms of white spotting, as well as bold white markings. Prior to the discovery of the W allelic series, many of these patterns were described by the term sabino, which is still used by some breed registries.

<span class="mw-page-title-main">Roan (horse)</span> Horse coat color pattern characterized by an even mixture of colored and white hairs on the body

Roan is a horse coat color pattern characterized by an even mixture of colored and white hairs on the body, while the head and "points"—lower legs, mane, and tail—are mostly solid-colored. Horses with roan coats have white hairs evenly intermingled throughout any other color. The head, legs, mane, and tail have fewer scattered white hairs or none at all. The roan pattern is dominantly inherited, and is found in many horse breeds. While the specific mutation responsible for roan has not been exactly identified, a DNA test can determine zygosity for roan in several breeds. True roan is always present at birth, though it may be hard to see until after the foal coat sheds out. The coat may lighten or darken from winter to summer, but unlike the gray coat color, which also begins with intermixed white and colored hairs, roans do not become progressively lighter in color as they age. The silvering effect of mixed white and colored hairs can create coats that look bluish or pinkish.

<span class="mw-page-title-main">Dog coat genetics</span> Genetics behind dog coat

Dogs have a wide range of coat colors, patterns, textures and lengths. Dog coat color is governed by how genes are passed from dogs to their puppies and how those genes are expressed in each dog. Dogs have about 19,000 genes in their genome but only a handful affect the physical variations in their coats. Most genes come in pairs, one being from the dog's mother and one being from its father. Genes of interest have more than one expression of an allele. Usually only one, or a small number of alleles exist for each gene. In any one gene locus a dog will either be homozygous where the gene is made of two identical alleles or heterozygous where the gene is made of two different alleles.

The agouti gene, the Agouti-signaling protein (ASIP) is responsible for variations in color in many species. Agouti works with extension to regulate the color of melanin which is produced in hairs. The agouti protein causes red to yellow pheomelanin to be produced, while the competing molecule α-MSH signals production of brown to black eumelanin. In wildtype mice, alternating cycles of agouti and α-MSH production cause agouti coloration. Each hair has bands of yellow which grew during agouti production, and black which grew during α-MSH production. Wildtype mice also have light-colored bellies. The hairs there are a creamy color the whole length because the agouti protein was produced the whole time the hairs were growing.

References