Cream gene

Last updated

The action of the cream gene on a chestnut base coat produces palomino. Palomino Horse.jpg
The action of the cream gene on a chestnut base coat produces palomino.
Rosy pink skin and pale blue eyes are characteristics of cremellos, or "double-dilute" chestnuts. Akhalteke craem.jpg
Rosy pink skin and pale blue eyes are characteristics of cremellos, or "double-dilute" chestnuts.

The cream gene is responsible for a number of horse coat colors. Horses that have the cream gene in addition to a base coat color that is chestnut will become palomino if they are heterozygous, having one copy of the cream gene, or cremello, if they are homozygous. Similarly, horses with a bay base coat and the cream gene will be buckskin or perlino. A black base coat with the cream gene becomes the not-always-recognized smoky black or a smoky cream. Cream horses, even those with blue eyes, are not white horses. Dilution coloring is also not related to any of the white spotting patterns.

Contents

The cream gene (CCr) is an incomplete dominant allele with a distinct dosage effect. The DNA sequence responsible for the cream colors is the cream allele, which is at a specific locus on the solute carrier family 45 member 2 (SLC45A2) gene (previously known as MATP and OCA4, among others). Its general effect is to lighten the coat, skin and eye colors. When one copy of the allele is present, it dilutes "red" pigment to yellow or gold, with a stronger effect on the mane and tail, but does not dilute black color to any significant degree. When two copies of the allele are present, both red and black pigments are affected; red hairs still become cream, and black hairs become reddish. A single copy of the allele has minimal impact on eye color, but when two copies are present, a horse will be blue-eyed in addition to a light coat color.

The cream gene is one of several hypomelanism or dilution genes identified in horses. Therefore, it is not always possible to tell by color alone whether the CCr allele is present without a DNA test. Other dilution genes that may mimic some of the effects of the cream gene in either single or double copies include the pearl gene, silver dapple gene, and the champagne gene. Horses with the dun gene also may mimic a single copy of the cream gene. To complicate matters further, it is possible for a horse to carry more than one type of dilution gene, sometimes giving rise to coloring that researchers call a pseudo double dilute.

The discovery of the cream gene had a significant effect on breeding, allowing homozygous blue-eyed creams to be recognized by many breed registries that had previously registered palominos but banned cremellos, under the mistaken notion that homozygous cream was a form of albinism.

Colors produced

Cream coat colors are described by their relationship to the three "base" coat colors: chestnut, bay, and black. All horses obtain two copies of the SLC45A2 gene; one from the sire, and one from the dam. A horse may have the cream allele or the non-cream allele on each gene. Those with two non-cream alleles will not exhibit true cream traits. Horses with one cream allele and one non-cream allele, popularly called "single dilutes," exhibit specific traits: all red pigment in the coat is gold, while the black pigment is either unaffected or only subtly affected. [1] [2] These horses are usually palomino, buckskin, or smoky black. These horses often have light brown eyes. [3] Horses with two copies of the cream allele also exhibit specific traits: cream-colored coats, pale blue eyes, and rosy-pink skin. These horses are usually called cremello, perlino, or smoky cream.

Heterozygous creams ("single dilutes")

Horses that are heterozygous creams, that is, have only one copy of the cream gene, have a lightened hair coat. The precise cream dilute coat color produced depends on the underlying base coat color. Unless also affected by other, unrelated genes, they maintain dark skin and brown eyes, though some heterozygous dilutes may be born with pink skin that darkens with age. Some have slightly lighter, amber eyes. However, the heterozygous cream dilute (CR) must not be confused with a horse carrying champagne dilution. Champagne (CH) dilutes are born with pumpkin-pink skin and blue eyes, which darken within days to amber, green or light brown, and their skin acquires a darker mottled complexion around the eyes, muzzle, and genitalia as the animal matures. [4] It is also possible for a heterozygous cream horse to carry more than one of the other dilution alleles. (see "Cream mimics" below) In such cases, they may exhibit some characteristics more typical of a homozygous dilute.

Cream dilutions may have seasonal color variation between winter and summer coats, as seen in this palomino PalominoContrast.jpg
Cream dilutions may have seasonal color variation between winter and summer coats, as seen in this palomino

Palomino is the best known cream-based coat color, and is produced by the action of one cream allele on a chestnut coat. It is characterized by a cream or white mane and tail and yellow or gold coat. [3] The classic golden shade akin to that of a newly minted gold coin is common, but there are other variations: the darkest shades are called sooty palominos, unusual but most often seen in Morgans, can include a mane and tail with darker hairs and heavy dappling in the coat. [5] The palest varieties can be nearly white, retaining darker skin and eyes, are sometimes mistakenly confused with cremello, and are called isabellas in some places.

Buckskin is also a well-known color, produced by the action of one cream gene on a bay coat. All red hairs in the base coat are diluted to gold. The black areas, such as the mane, tail and legs, are generally unaffected. The cream gene acting on a "blood bay" coat, the reddest shade, are pale gold with black points. They are sometimes called buttermilk buckskins. The cream gene acting on the darkest bays (sometimes mistaken for seal browns) may dilute to a sooty buckskin. True seal brown buckskins can be very difficult to identify owing to their almost all-black coats. It is only the reddish markings around the eyes, muzzle, elbow and groin, which are turned gold, that may give them away. [6]

Smoky black foal Smokey Black Filly.jpg
Smoky black foal

Smoky black , a horse with a black base coat and one copy of the cream allele, is less well-known than the two golden shades. Since a single copy of the cream gene primarily affects red pigment, with only a subtle effect on black, smoky blacks can be quite difficult to identify. Smoky blacks may have reddish guard hairs inside their ears,[ citation needed ] and experienced horse persons may detect something "off" about the coat of a smoky black, though the slightly burnished look is often chalked up to sun bleaching, which can also be seen in true blacks. The palest can be mistaken for bays or liver chestnuts, especially if exposed to the elements. Smoky black coats tend to react strongly to sun and sweat, and many smoky blacks turn a chocolate color with particularly reddish manes and tails. Bleaching due to the elements means that the legs retain their color better, and can take on an appearance of having dark points like a bay horse. Smoky blacks, however, will lack rich red tones in the coat, instead favoring chocolate and orange tones. Because smoky blacks are often not recognized as such, breeders sometimes think that the cream gene "skipped" generations.

While there are "color breed" registries for palomino and buckskin horses, which generally record horses based on apparent phenotype and do not require a DNA color test, it is impossible for these colors to breed "true" due to the action of a single copy of the cream allele. Crossing two heterozygous dilutes will statistically result in offspring which are 25% the base color, 25% homozygous dilute, and 50% heterozygous dilute.

This smoky cream tobiano illustrates the difference between unpigmented (white) skin and hair, and skin and hair color due to the cream dilution. Rokvit1.jpg
This smoky cream tobiano illustrates the difference between unpigmented (white) skin and hair, and skin and hair color due to the cream dilution.

When a horse is homozygous, meaning it has two copies of the cream allele, the strongest color dilution occurs.

All three shades can be difficult to distinguish from one another, and are often only firmly identified after a DNA test. While both red and black pigments are turned cream, the black pigment retains a little more color and tends to have a reddish or rusty tint. [7] Thus all-red coats are turned all-ivory, all-black coats are turned all-rusty cream, and bay coats have ivory bodies with slightly darker points. [3]

Perlinos may have a reddish-tinted mane Perlino-colored-horse.jpg
Perlinos may have a reddish-tinted mane

Horses with two copies of the cream allele can be collectively called double-dilutes, homozygous creams, or blue-eyed creams, and they share a number of characteristics. The eyes are pale blue, paler than the unpigmented blue eyes associated with white color or white markings, and the skin is rosy-pink. The true, unpigmented pink skin associated with white markings is clearly visible against the rosy-pink skin of a double-dilute, especially when their coat is wetted down. The palest shades of double-dilute coats are just off-white, while the darkest are distinctly rust-tinged. Their coats may be described as nearly white [1] or ivory [3] in addition to cream.

The off-white coat, pale blue eyes, and rosy pink skin distinguish the coats of double-dilutes from those of true white horses. True white horses have unpigmented skin and hair due to the incomplete migration of melanocytes from the neural crest during development. [8]

No health defects are associated with the cream gene. This is also true of the normal variations in skin, hair and eye color encoded on the human SLC45A2 gene. [9] True white coat coloring can be produced by at least half a dozen known genes, and some are associated with health defects. Some genes which encode a white or near-white coat when heterozygous, popularly called "dominant white," may be lethal in homozygote embryos. [10] Another specific mutation on the endothelin receptor type B (EDNRB) gene is associated with the frame overo pattern produces Lethal white syndrome if homozygous, but carriers can be identified with a DNA test.

Prevalence

Sooty buckskin Connemara Connemara stallion.jpg
Sooty buckskin Connemara

The cream gene is found in many breeds. It is common in American breeds including the American Quarter Horse, [11] Morgan, [12] American Saddlebred,Tennessee Walking Horse, [13] and Missouri Fox Trotter. [14] It is also seen in the Miniature horse, [15] Akhal-Teke, [16] Icelandic horse, [17] Connemara pony, [1] and Welsh pony. [18] It is even found in certain lines of Thoroughbreds, [19] warmbloods, and the Lusitano. [20] The Andalusian horse has conflicting standards, with the cream gene being recognized by some registries, [20] but not explicitly mentioned by others. [21] The cream gene is completely absent from the Arabian horse gene pool, [22] and is also not found in breeds with stringent color requirements, such as the Friesian horse.

Cream mimics

A light palomino foal. Its light cream coat color gives it a superficial resemblance to a cremello, but it has dark skin and eyes, so it can only have one copy of the cream dilution gene, and cannot be a double-dilute cremello or a pseudo-double dilute. Cremello5.jpg
A light palomino foal. Its light cream coat color gives it a superficial resemblance to a cremello, but it has dark skin and eyes, so it can only have one copy of the cream dilution gene, and cannot be a double-dilute cremello or a pseudo-double dilute.
Comparison between the lightly pigmented blue eye of a perlino (top) versus a pure blue "unpigmented" eye, created by an unpigmented layer of cells at the front of the eye. Creamvswhite-eyes.JPG
Comparison between the lightly pigmented blue eye of a perlino (top) versus a pure blue "unpigmented" eye, created by an unpigmented layer of cells at the front of the eye.

Other coat colors may mimic the appearance of a cream coat color. The presence or absence of the cream gene can always be verified by the use of a DNA test. Also, as explained in "Mixed dilutes" below, horses may simultaneously carry more than one dilution gene. Dilution genes which, by themselves, may be confused with cream dilutions include the following:

Mixed dilutes

If a horse carries more than one type of dilution gene, additional cream mimics and other unique colors may occur. The combined effects of champagne and a single cream gene can be hard to distinguish from a double-dilute cream. Freckled skin and greenish eyes, or pedigree knowledge can yield clues, though the mystery can also be solved with a DNA test.

The pearl gene or "barlink factor" is a recessive gene that affects only red pigment. [2] When a single copy each of pearl and cream are present, the effect is quite similar to cremello. Dilutes combining the pearl gene with one copy of the cream gene are known as "pseudo-double dilutes" and produce a cream dilute phenotype that includes pale skin and blue/green eyes. [2] DNA tests and patience are effective in determining which is the case.

Some of the terms used to describe these combinations include:

Inheritance and expression

Buckskin New Forest Pony Buckskin New Forest pony.JPG
Buckskin New Forest Pony

The cream locus is on exon 2 of the SLC45A2 gene; a single nucleotide polymorphism results in an aspartic acid-to-asparagine substitution (N153D). [1] The DNA test offered by various laboratories detects this mutation. [2] The SLC45A2 gene encodes a protein illustrated to have roles in melanogenesis in humans, mice, and medaka. [1] Mice affected by a condition homologous to cream exhibit irregularly shaped melanosomes, which are the organelles within melanocytes that directly produce pigment. [24]

Genes in horses such as Frame and Sabino1 produce white spotting by interrupting or limiting the migration of melanocytes from the neural crest, while the cream mutation affects the nature of the pigments produced by melanocytes. Therefore the skin, eyes, and hair of horses with the cream mutation do not lack melanocytes, melanosomes, or melanins, but rather exhibit hypomelanism. [1]

Prior to the mapping of the cream gene, this locus was titled C for "color". [3] There are two alleles in the series: the recessive, wildtype allele C and the incomplete dominant CCr. [2] The CCr allele represents the N153D SLC45A2 mutation.

Cream was first formally studied by Adalsteinsson in 1974, who reported that the inheritance of palomino and buckskin coat colors in Icelandic horses followed a "semi-dominant" or incomplete dominant model. Adalsteinsson also noted that in heterozygotes, only the red pigment (pheomelanin) was diluted. [17]

The discovery that the palomino coat color was inextricably linked to the cream coat color was very significant. At one time, double dilutes, particularly cremellos, were barred from registration by many breed organizations. [25] Cremello was thought by some to be a lethal white or albino coloring and a potential genetic defect. [26] There also were known health implications of albinism in humans, [27] and cultural prejudices; while a heroic figure such as Roy Rogers rode a golden palomino, the "Albino" in Mary O'Hara's Thunderhead portrayed a horse with a freakish defect. These coat colors carried vastly different cultural significance. Because the experience of breeders of palomino and buckskin horses indicated that blue-eyed cream offspring of these animals were not genetically defective, some of the research that took place nearly thirty years after Adalsteinsson's studies that identified the nature of cream dilution was directly supported by breed registries that had historically barred blue eyed creams.

Cryptic creams

Smoky black Icelandic horse Smoky black icelandic horse.jpg
Smoky black Icelandic horse

The cream gene's preferential effect on red pigment has not yet been explained. The champagne dilution affects both black and red pigments equally, the silver dapple gene affects only black pigment, and pearl exhibits a recessive mode of inheritance and only affects red pigment. [2] Unlike the cream gene, pearl does not seem to affect the mane and tail to a greater extent than the body coat, a feature of cream that is most vividly illustrated in the palomino coat color. This characteristic of the cream gene is also unexplained. The disparity in effects on red and black pigments is easy to identify in buckskins, with their black points, but it is also visible in CCr/CCr homozygotes: perlinos (homozygous cream on a bay coat) often retain points that are a darker shade of cream. [3]

Sooty palomino, with streaks in its mane Palomino Quarter Horse Stallion.jpg
Sooty palomino, with streaks in its mane

This unusual feature enables what are called cryptic creams. [1] A certain percentage of dark bay, seal brown, and black horses exhibit such subtle dilution of their coats as to be misregistered. In the study that mapped the cream gene, three horses registered as seal brown, dark bay or bay were actually smoky black and buckskin. [1] This is one way by which the cream gene is transmitted through generations without being identified. Horses born palomino, buckskin, and smoky black, but also carry the gray gene, have a hair coat that turns white as they age and are usually registered as "gray" rather than as their birth color. This is particularly a common occurrence in the Connemara breed. Horses sold after turning fully gray may surprise breeders by producing golden or cream offspring. [1]

This effect - stronger expression on red pigment - is also seen in coat pattern genes in horses. In general, white markings are more pervasive in chestnuts than in non-chestnuts, to the extent that homozygous non-chestnuts (which carry the "Extension" (E) gene and may also carry the Agouti gene) were more modestly marked than non-chestnuts heterozygous for the E allele. [28] [29] [30] This effect has also been identified and studied in the Leopard complex patterns. [31]

Analogous conditions in other animals

The SLC45A2 gene is best known in humans as being the location of a mutation that results in human type IV oculocutaneous albinism (OCA4). Type IV oculocutaneous albinism, like other types of human albinism, results in hypopigmentation of the skin and eyes, with increased rates of skin cancer and reduced visual acuity. [32] None of these effects are associated with the equine cream gene. Other human SLC45A2 polymorphisms result in normal pigment variations, specifically fair skin, light eyes, and light hair in Caucasian populations. [9]

A presumed knockout mutation in the same gene causes the phenotype of white tigers, which retain black striping though they lack the typical orange background pigmentation. [33] A polymorphism on the mouse SLC45A2 gene is known to be the cause of the underwhite coat color phenotype. The phenotype was first identified in the 1960s, and since then has been mapped successfully. Affected individuals have a reduction in eye and coat pigmentation, and irregularly shaped melanosomes. [24]

See also

Related Research Articles

<span class="mw-page-title-main">Palomino</span> Genetic color in horses

Palomino is a genetic color in horses, consisting of a gold coat and white mane and tail; the degree of whiteness can vary from bright white to yellow. The palomino color derived from the inter-breeding of Spanish horses with those from the United States. Genetically, the palomino color is created by a single allele of a dilution gene called the cream gene working on a "red" (chestnut) base coat. Palomino is created by a genetic mechanism of incomplete dominance, hence it is not considered true-breeding. However, most color breed registries that record palomino horses were founded before equine coat color genetics were understood as well as they are today, therefore the standard definition of a palomino is based on the visible coat color, not heritability nor the underlying presence of the dilution gene.

<span class="mw-page-title-main">Dilution gene</span> Gene that lightens the coat colour of certain animals

A dilution gene is any one of a number of genes that act to create a lighter coat color in living creatures. There are many examples of such genes:

<span class="mw-page-title-main">Bay (horse)</span> Hair coat color of horses

Bay is a hair coat color of horses, characterized by a reddish-brown or brown body color with a black point coloration on the mane, tail, ear edges, and lower legs. Bay is one of the most common coat colors in many horse breeds.

At right is displayed the color traditionally called liver.

<span class="mw-page-title-main">Point coloration</span> Coloration of animal coat/fur

Point coloration is animal coat coloration with a pale body and relatively darker extremities, i.e. the face, ears, feet, tail, and scrotum. It is most recognized as the coloration of Siamese and related breeds of cat, but can be found in dogs, rabbits, rats, sheep, guinea pigs and horses as well.

<span class="mw-page-title-main">Gray horse</span> Coat color characterized by progressive depigmentation of the colored hairs of the coat

A gray horse has a coat color characterized by progressive depigmentation of the colored hairs of the coat. Most gray horses have black skin and dark eyes; unlike some equine dilution genes and some other genes that lead to depigmentation, gray does not affect skin or eye color. Gray horses may be born any base color, depending on other color genes present. White hairs begin to appear at or shortly after birth and become progressively more prevalent as the horse ages as white hairs become intermingled with hairs of other colors. Graying can occur at different rates—very quickly on one horse and very slowly on another. As adults, most gray horses eventually become completely white, though some retain intermixed light and dark hairs.

<span class="mw-page-title-main">Champagne gene</span> Simple dominant allele responsible for a number of rare horse coat colors

The champagne gene is a simple dominant allele responsible for a number of rare horse coat colors. The most distinctive traits of horses with the champagne gene are the hazel eyes and pinkish, freckled skin, which are bright blue and bright pink at birth, respectively. The coat color is also affected: any hairs that would have been red are gold, and any hairs that would have been black are chocolate brown. If a horse inherits the champagne gene from either or both parents, a coat that would otherwise be chestnut is instead gold champagne, with bay corresponding to amber champagne, seal brown to sable champagne, and black to classic champagne. A horse must have at least one champagne parent to inherit the champagne gene, for which there is now a DNA test.

<span class="mw-page-title-main">Silver dapple gene</span>

The silver or silver dapple (Z) gene is a dilution gene that affects the black base coat color and is associated with Multiple Congenital Ocular Abnormalities. It will typically dilute a black mane and tail to a silvery gray or flaxen color, and a black body to a chocolaty brown, sometimes with dapples. It is responsible for a group of coat colors in horses called "silver dapple" in the west, or "taffy" in Australia. The most common colors in this category are black silver and bay silver, referring to the respective underlying coat color.

<span class="mw-page-title-main">Equine coat color genetics</span> Genetics behind the equine coat color

Equine coat color genetics determine a horse's coat color. Many colors are possible, but all variations are produced by changes in only a few genes. Bay is the most common color of horse, followed by black and chestnut. A change at the agouti locus is capable of turning bay to black, while a mutation at the extension locus can turn bay or black to chestnut.

<span class="mw-page-title-main">Dun gene</span> Dilution gene

The dun gene is a dilution gene that affects both red and black pigments in the coat color of a horse. The dun gene lightens most of the body while leaving the mane, tail, legs, and primitive markings the shade of the undiluted base coat color. A dun horse always has a dark dorsal stripe down the middle of its back, usually has a darker face and legs, and may have transverse striping across the shoulders or horizontal striping on the back of the forelegs. Body color depends on the underlying coat color genetics. A classic "bay dun" is a gray-gold or tan, characterized by a body color ranging from sandy yellow to reddish brown. Duns with a chestnut base may appear a light tan shade, and those with black base coloration are a smoky gray. Manes, tails, primitive markings, and other dark areas are usually the shade of the undiluted base coat color. The dun gene may interact with all other coat color alleles.

<span class="mw-page-title-main">Fjord horse</span> Breed of horse

The Fjord or Norwegian Fjord Horse is a relatively small but very strong horse breed from the mountainous regions of western Norway. It is an agile breed of light draught horse build. It is always dun in colour, with five variations in shade recognised in the breed standard. One of the world's oldest breeds, it has been used for hundreds of years as a farm horse in Norway, and in modern times is popular for its generally good temperament. It is used both as a harness horse and under saddle.

<span class="mw-page-title-main">Chestnut (horse color)</span> Horse coat color

Chestnut is a hair coat color of horses consisting of a reddish-to-brown coat with a mane and tail the same or lighter in color than the coat. Chestnut is characterized by the absolute absence of true black hairs. It is one of the most common horse coat colors, seen in almost every breed of horse.

<span class="mw-page-title-main">Equine coat color</span> Horse coat colors and markings

Horses exhibit a diverse array of coat colors and distinctive markings. A specialized vocabulary has evolved to describe them.

<span class="mw-page-title-main">White horse</span> Horse coat color

A white horse is born predominantly white and stays white throughout its life. A white horse has mostly pink skin under its hair coat, and may have brown, blue, or hazel eyes. "True white" horses, especially those that carry one of the dominant white (W) genes, are rare. Most horses that are commonly referred to as "white" are actually "gray" horses whose hair coats are completely white. Gray horses may be born of any color and their hairs gradually turn white as time goes by and take on a white appearance. Nearly all gray horses have dark skin, except under any white markings present at birth. Skin color is the most common method for an observer to distinguish between mature white and gray horses.

<span class="mw-page-title-main">Black horse</span> Horse coat color

Black is a hair coat color of horses in which the entire hair coat is black. Black is a relatively uncommon coat color, and it is not uncommon to mistake dark chestnuts or bays for black.

<span class="mw-page-title-main">American Cream Draft</span> American draft horse breed

The American Cream Draft is an American breed of draft horse, characterized by the cream or "gold champagne" color of its coat. It was developed in Iowa during the early twentieth century from a cream-colored mare named Old Granny. A breed registry was formed in 1944 but became inactive for several decades when breed numbers dropped due to the mechanization of farming. It was reactivated in 1982 and population numbers have slowly grown since then. It is a rare breed: its conservation status is considered critical by The Livestock Conservancy and the Equus Survival Trust.

<span class="mw-page-title-main">Smoky black</span>

Smoky black or black carrying cream is a coat color of horses which has the same phenotype as black. Smoky black is produced by the action of a heterozygous cream gene on an underlying black coat color. Therefore, smoky black is a member of the cream family of coat color dilutions, and found in horse populations that have other cream-based colors such as palomino, buckskin, perlino, cremello and smoky cream. All smoky blacks must have at least one parent with the cream gene, and a smoky black can only be verified through DNA testing or parentage. Smoky black has been mistaken for faded black, dark bay or brown, grullo or even liver chestnut.

<span class="mw-page-title-main">Pearl gene</span> Type of dilution gene

The Pearl gene, also known as the "Barlink factor", is a dilution gene at the same locus as the cream gene, which somewhat resembles the cream gene and the champagne gene but is unrelated to champagne. It is a somewhat rare dilution gene found in the American Quarter Horse, American Paint Horse, and Peruvian Paso. The same mutation appears in Iberian horse breeds such as the Lusitano and Andalusian. The existence of the pearl gene in Quarter Horses and Paints is probably because these breeds have some Iberian ancestors.

<span class="mw-page-title-main">Leopard complex</span> Coat pattern in horses

The leopard complex is a group of genetically related coat patterns in horses. These patterns range from progressive increases in interspersed white hair similar to graying or roan to distinctive, Dalmatian-like leopard spots on a white coat. Secondary characteristics associated with the leopard complex include a white sclera around the eye, striped hooves and mottled skin. The leopard complex gene is also linked to abnormalities in the eyes and vision. These patterns are most closely identified with the Appaloosa and Knabstrupper breeds, though its presence in breeds from Asia to western Europe has indicated that it is due to a very ancient mutation.

<span class="mw-page-title-main">Seal brown (horse)</span> Hair coat color of horses

Seal brown is a hair coat color of horses characterized by a near-black body color; with black points, the mane, tail and legs; but also reddish or tan areas around the eyes, muzzle, behind the elbow and in front of the stifle. The term is not to be confused with "brown", which is used by some breed registries to refer to either a seal brown horse or to a dark bay without the additional characteristics of seal brown.

References

  1. 1 2 3 4 5 6 7 8 9 10 Mariat, Denis; Sead Taourit; Gérard Guérin (2003). "A mutation in the MATP gene causes the cream coat colour in the horse". Genet. Sel. Evol. 35 (1). INRA, EDP Sciences: 119–133. doi:10.1051/gse:2002039. PMC   2732686 . PMID   12605854.
  2. 1 2 3 4 5 6 "Introduction to Coat Color Genetics". Veterinary Genetics Laboratory, University of California Davis. Retrieved December 29, 2008.
  3. 1 2 3 4 5 6 Locke, MM; LS Ruth; LV Millon; MCT Penedo; JC Murray; AT Bowling (2001). "The cream dilution gene, responsible for the palomino and buckskin coat colors, maps to horse chromosome 21". Animal Genetics. 32 (6): 340–343. doi:10.1046/j.1365-2052.2001.00806.x. PMID   11736803. The eyes and skin of palominos and buckskins are often slightly lighter than their non-dilute equivalents.
  4. Cook, D; Brooks S; Bellone R; Bailey E (2008). Barsh, Gregory S. (ed.). "Missense Mutation in Exon 2 of SLC36A1 Responsible for Champagne Dilution in Horses". PLOS Genetics. 4 (9): e1000195. doi: 10.1371/journal.pgen.1000195 . PMC   2535566 . PMID   18802473. Foals with one copy of CR also have pink skin at birth but their skin is slightly darker and becomes black/near black with age.
  5. Laura Behning. "Palomino". Morgan Colors.
  6. Laura Behning. "Buckskin". Morgan Colors.
  7. Bowling A.T. (1996) Horse Genetics. pp. 25±8. CAB International, Wallingford, UK.
  8. Thiruvenkadan, AK; N Kandasamy; S Panneerselvam (2008). "Review: Coat colour inheritance in horses". Livestock Science. 117 (2–3). Elsevier: 109–129. doi:10.1016/j.livsci.2008.05.008.
  9. 1 2 Online Mendelian Inheritance in Man (OMIM): Solute Carrier Family 45, Member 2; SLC45A2 - 606202
  10. Haase, B; Brooks, SA; Schlumbaum, A; Azor, PJ; Bailey, E; et al. (2007). "Allelic Heterogeneity at the Equine KIT Locus in Dominant White (W) Horses". PLOS Genet. 3 (11): e195. doi: 10.1371/journal.pgen.0030195 . PMC   2065884 . PMID   17997609.
  11. "Breed Characteristics". American Quarter Horse Association. Archived from the original on December 16, 2010. Retrieved December 16, 2010.
  12. "Guidelines to Coat Color and Coat Characteristics" (PDF). American Morgan Horse Association . Retrieved December 16, 2010.
  13. "Coat Colors of TWHs". Colors and Markings. Tennessee Walking Horse Breeders' and Exhibitors' Association. Archived from the original on August 5, 2007. Retrieved December 30, 2008.
  14. MFTHBA Color Panel. "What Color Is Your Horse?". Missouri Fox Trotting Horse Breed Association. Retrieved December 30, 2008.
  15. American Miniature Horse Association. "Coat Color Chart". Registration. Archived from the original on November 9, 2009. Retrieved December 30, 2008.
  16. Akhal-Teke Association of America. "Colors of the Akhal-Teke". Breed Standards. Archived from the original on February 8, 2009. Retrieved December 30, 2008.
  17. 1 2 Adalsteinsson, S. (1974). "Inheritance of the palomino color in Icelandic horses". Journal of Heredity. 65 (1): 15–20. doi:10.1093/oxfordjournals.jhered.a108448. PMID   4847742.
  18. Welsh Pony and Cob Society of America. "Description of the Welsh Mountain Pony" (PDF). 2008 Rule Book. Archived from the original (PDF) on September 7, 2008. Retrieved December 30, 2008.
  19. The Jockey Club. "Coat Colors Of Thoroughbreds". Interactive RegistrationTM Help Desk: How to Identify a Thoroughbred. The Jockey Club. Retrieved February 17, 2008.
  20. 1 2 "Rules and regulations of registration". International Andalusian and Lusitano Horse Association. Archived from the original on June 8, 2008. Retrieved December 16, 2010.
  21. ANCCE. "Conformation Characteristics: P.R.E. breed prototype". Asociación Nacional de Criadores de Caballos de Pura Raza Española. Retrieved December 30, 2008.[ permanent dead link ]
  22. Arabian Horse Association. "How Do I... Determine Color & Markings?". Purebred Registration. Arabian Horse Association. Archived from the original on May 16, 2008. Retrieved May 28, 2008.
  23. " Introduction to Coat Color Genetics" from Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis. Web Site accessed March 27, 2008
  24. 1 2 Sweet, H.O.; Brilliant M.H.; Cook S.A.; Johnson K.R.; Davisson M.T. (1998). "A new allelic series for the underwhite gene on mouse chromosome 15". Journal of Heredity. 89 (6): 546–51. doi: 10.1093/jhered/89.6.546 . PMID   9864865.
  25. Cremello & Perlino Educational Association. "Update" . Retrieved March 13, 2016.
  26. Cremello & Perlino Educational Association. "The Facts and the Myths". Archived from the original on February 7, 2012. Retrieved December 30, 2008.
  27. Albinism Association of Australia. "What is Albinism?". Archived from the original on September 24, 2009. Retrieved November 2, 2009.
  28. Rieder, S; Hagger C; Obexer-Ruff G; Leeb T; Poncet PA. (2008). "Genetic analysis of white facial and leg markings in the Swiss Franches-Montagnes Horse Breed" (PDF). Journal of Heredity. 99 (2): 130–6. doi: 10.1093/jhered/esm115 . PMID   18296388.
  29. Woolf, CM (July–August 1990). "Multifactorial inheritance of common white markings in the Arabian horse". Journal of Heredity. 81 (4): 240–6. doi:10.1093/oxfordjournals.jhered.a110987. PMID   2273238.
  30. Woolf, CM (March–April 1991). "Common white facial markings in bay and chestnut Arabian horses and their hybrids". Journal of Heredity. 82 (2): 167–9. doi:10.1093/oxfordjournals.jhered.a111053. PMID   2013690.
  31. Sheila Archer (August 31, 2008). "Studies Currently Underway". The Appaloosa Project. Archived from the original on July 21, 2011. Retrieved December 29, 2008.
  32. Newton, JM; Cohen-Barak O; Hagiwara N; Gardner JM; Davisson MT; King RA; Brilliant MH (November 2001). "Mutations in the Human Orthologue of the Mouse underwhite Gene (uw) Underlie a New Form of Oculocutaneous Albinism, OCA4". American Journal of Human Genetics. 69 (5): 981–8. doi:10.1086/324340. PMC   1274374 . PMID   11574907.
  33. Xu X, Dong GX, Hu XS, Miao L, Zhang XL, Zhang DL, et al. (June 2013). "The genetic basis of white tigers". Current Biology. 23 (11): 1031–5. Bibcode:2013CBio...23.1031X. doi: 10.1016/j.cub.2013.04.054 . PMID   23707431.