It has been suggested that Sorrel (horse) be merged into this article. (Discuss) Proposed since February 2024. |
Chestnut | |
---|---|
Other names | Red, sorrel, chesnut |
Variants | Flaxen, Liver chestnut |
Genotype | |
Base color | Recessive extension "e" |
Modifying genes | none |
Description | reddish-brown color uniform over entire body other than markings |
Phenotype | |
Body | reddish-brown |
Head and Legs | same as body, occasionally lighter |
Mane and tail | flaxen to brown |
Skin | Usually black, may be lighter at birth in some breeds |
Eyes | Brown, eyes may be lighter at birth |
Chestnut is a hair coat color of horses consisting of a reddish-to-brown coat with a mane and tail the same or lighter in color than the coat. Chestnut is characterized by the absolute absence of true black hairs. It is one of the most common horse coat colors, seen in almost every breed of horse.
Chestnut is a very common coat color but the wide range of shades can cause confusion. The lightest chestnuts may be mistaken for palominos, while the darkest shades can be so dark they appear black. Chestnuts have dark brown eyes and black skin, and typically are some shade of red or reddish brown. The mane, tail, and legs may be lighter or darker than the body coat, but unlike the bay they are never truly black. Like any other color of horse, chestnuts may have pink skin with white hair where there are white markings, and if such white markings include one or both eyes, the eyes may be blue. Chestnut foals may be born with pinkish skin, which darkens shortly afterwards. [1]
Chestnut is produced by a recessive gene. Unlike many coat colors, chestnut can be true-breeding; that is, assuming they carry no recessive modifiers like pearl or mushroom, the mating between two chestnuts will produce chestnut offspring every time. This can be seen in breeds such as the Suffolk Punch and Haflinger, which are exclusively chestnut. Other breeds including the American Belgian Draft and Budyonny are predominantly chestnut. However, a chestnut horse need not have two chestnut parents. This is especially apparent in breeds like the Friesian horse and Ariegeois pony which have been selected for many years to be uniformly black, but on rare occasions still produce chestnut foals.
Chestnuts can vary widely in shade and different terms are sometimes used to describe these shades, even though they are genetically indistinguishable. Collectively, these coat colors are usually called "red" by geneticists.
Chestnut is considered a "base color" in the discussion of equine coat color genetics. Additional coat colors based on chestnut are often described in terms of their relationship to chestnut:
Combinations of multiple dilution genes do not always have consistent names. For example, "dunalinos" are chestnuts with both the dun gene and one copy of the cream gene.
The chestnut or sorrel color, genetically considered "red", is caused by one of two recessive alleles at the extension locus (genetics). Extension has three known alleles: the wildtype "E", necessary for the bay and black coat colors, plus two mutations "e" and "ea", both of which are capable of causing the chestnut color. Each individual horse has two copies of the extension gene. If either copy is "E", then the horse will be bay- or black-based. But if the two copies are any combination of "e" and "ea" (e/e, e/ea, or ea/ea), then the horse will be red-based. Alternate extension "ea" is rare and there is no known difference in appearance between it and the more common "e". [5] [6]
Because the red color is recessive, two bay or black parents can produce a chestnut foal if both carry "e" or "ea". However, two chestnut parents cannot produce a bay or black foal.
The extension locus (genetics) is found on chromosome 3 (ECA3) and is part of the gene that codes for the equine melanocortin 1 receptor (MC1R). This receptor is part of a signalling pathway which when activated causes melanocytes to produce eumelanin, or black pigment, instead of pheomelanin, or red pigment. [7] The two mutant alleles "e" and "ea" code for dysfunctional receptors unable to activate this pathway, so absent "E", only red pigment can be produced. At least one copy of the functional "E" allele is required to activate the signal and produce black pigment. In general, alleles that create fully functional MC1R proteins are inherited dominantly and result in a black-based coat color ("E"), while mutated alleles that create "dysfunctional" MC1R are recessive and result in a lighter coat color ("e").
Normally MC1R would bind to the Melanocyte-stimulating hormone (MSH) which is released by the pituitary gland [7] and stimulates the production and release of melanin in skin and hair. Red hair color in horses ("e") is created by a missense mutation in the code for MC1R, [8] which results in a protein that cannot bind to MSH. When only mutant copies ("e) of the gene are available, non-functional MC1R proteins are produced. As a result, no black pigment is deposited into the hair and the entire coat is red-based. However, the skin of chestnut horses is still generally black, unless affected by other genes. Some chestnut foals are also born with lighter eyes and lightened skin, which darken not long after birth. This is not the same as the blue eyes and pink skin seen at birth in foals carrying the champagne gene. It is a genetic mechanism not fully understood, but may be related to the pheomelanistic characteristics of "e".
Though "E" allows the production of black pigment, it can also allow for red pigment in some parts of the animal as seen in bay horses. This happens when it is locally antagonized by the agouti signalling peptide (ASIP), or agouti gene, which "suppresses" black color and allows some red pigment to be formed.
Roan is a coat color found in many animals, including horses, cattle, antelope, cat and dogs. It is defined generally as an even mixture of white and pigmented hairs that do not "gray out" or fade as the animal ages. There are a variety of genetic conditions which produce the colors described as "roan" in various species.
Palomino is a genetic color in horses, consisting of a gold coat and white mane and tail; the degree of whiteness can vary from bright white to yellow. Genetically, the palomino color is created by a single allele of a dilution gene called the cream gene working on a "red" (chestnut) base coat. Palomino is created by a genetic mechanism of incomplete dominance, hence it is not considered true-breeding. However, most color breed registries that record palomino horses were founded before equine coat color genetics were understood as well as they are today, therefore the standard definition of a palomino is based on the visible coat color, not heritability nor the underlying presence of the dilution gene.
A dilution gene is any one of a number of genes that act to create a lighter coat color in living creatures. There are many examples of such genes:
Sorrel is a reddish coat color in a horse lacking any black. It is a term that is usually synonymous with chestnut and one of the most common coat colors in horses. Some regions and breed registries distinguish it from chestnut, defining sorrel as a light, coppery shade, and chestnut as a browner shade. However, in terms of equine coat color genetics there is no known difference between sorrel and chestnut. Solid reddish-brown color is a base color of horses, caused by the recessive e gene.
Bay is a hair coat color of horses, characterized by a reddish-brown or brown body color with a black point coloration on the mane, tail, ear edges, and lower legs. Bay is one of the most common coat colors in many horse breeds.
At right is displayed the color traditionally called liver.
A gray horse has a coat color characterized by progressive depigmentation of the colored hairs of the coat. Most gray horses have black skin and dark eyes; unlike some equine dilution genes and some other genes that lead to depigmentation, gray does not affect skin or eye color. Gray horses may be born any base color, depending on other color genes present. White hairs begin to appear at or shortly after birth and become progressively more prevalent as the horse ages as white hairs become intermingled with hairs of other colors. Graying can occur at different rates—very quickly on one horse and very slowly on another. As adults, most gray horses eventually become completely white, though some retain intermixed light and dark hairs.
The cream gene is responsible for a number of horse coat colors. Horses that have the cream gene in addition to a base coat color that is chestnut will become palomino if they are heterozygous, having one copy of the cream gene, or cremello, if they are homozygous. Similarly, horses with a bay base coat and the cream gene will be buckskin or perlino. A black base coat with the cream gene becomes the not-always-recognized smoky black or a smoky cream. Cream horses, even those with blue eyes, are not white horses. Dilution coloring is also not related to any of the white spotting patterns.
The champagne gene is a simple dominant allele responsible for a number of rare horse coat colors. The most distinctive traits of horses with the champagne gene are the hazel eyes and pinkish, freckled skin, which are bright blue and bright pink at birth, respectively. The coat color is also affected: any hairs that would have been red are gold, and any hairs that would have been black are chocolate brown. If a horse inherits the champagne gene from either or both parents, a coat that would otherwise be chestnut is instead gold champagne, with bay corresponding to amber champagne, seal brown to sable champagne, and black to classic champagne. A horse must have at least one champagne parent to inherit the champagne gene, for which there is now a DNA test.
The silver or silver dapple (Z) gene is a dilution gene that affects the black base coat color and is associated with Multiple Congenital Ocular Abnormalities. It will typically dilute a black mane and tail to a silvery gray or flaxen color, and a black body to a chocolaty brown, sometimes with dapples. It is responsible for a group of coat colors in horses called "silver dapple" in the west, or "taffy" in Australia. The most common colors in this category are black silver and bay silver, referring to the respective underlying coat color.
Equine coat color genetics determine a horse's coat color. Many colors are possible, but all variations are produced by changes in only a few genes. Bay is the most common color of horse, followed by black and chestnut. A change at the agouti locus is capable of turning bay to black, while a mutation at the extension locus can turn bay or black to chestnut.
The dun gene is a dilution gene that affects both red and black pigments in the coat color of a horse. The dun gene lightens most of the body while leaving the mane, tail, legs, and primitive markings the shade of the undiluted base coat color. A dun horse always has a dark dorsal stripe down the middle of its back, usually has a darker face and legs, and may have transverse striping across the shoulders or horizontal striping on the back of the forelegs. Body color depends on the underlying coat color genetics. A classic "bay dun" is a gray-gold or tan, characterized by a body color ranging from sandy yellow to reddish brown. Duns with a chestnut base may appear a light tan shade, and those with black base coloration are a smoky gray. Manes, tails, primitive markings, and other dark areas are usually the shade of the undiluted base coat color. The dun gene may interact with all other coat color alleles.
Horses exhibit a diverse array of coat colors and distinctive markings. A specialized vocabulary has evolved to describe them.
Black is a hair coat color of horses in which the entire hair coat is black. Black is a relatively uncommon coat color, and it is not uncommon to mistake dark chestnuts or bays for black.
Smoky black or just smoky is a hair coat color of horses which appears dark brown to black in color. Smoky black is produced by the action of a heterozygous cream gene on an underlying black coat color. Therefore, smoky black is a member of the cream family of coat color dilutions, and found in horse populations that have other cream-based colors such as palomino, buckskin, perlino, cremello and smoky cream. All smoky blacks must have at least one parent with the cream gene, and a smoky black can only be verified through DNA testing or parentage. Smoky black has been mistaken for faded black, dark bay or brown, grullo or even liver chestnut.
The genetic basis of coat colour in the Labrador Retriever has been found to depend on several distinct genes. The interplay among these genes is used as an example of epistasis.
Seal brown is a hair coat color of horses characterized by a near-black body color; with black points, the mane, tail and legs; but also reddish or tan areas around the eyes, muzzle, behind the elbow and in front of the stifle. The term is not to be confused with "brown", which is used by some breed registries to refer to either a seal brown horse or to a dark bay without the additional characteristics of seal brown.
Roan is a horse coat color pattern characterized by an even mixture of colored and white hairs on the body, while the head and "points"—lower legs, mane, and tail—are mostly solid-colored. Horses with roan coats have white hairs evenly intermingled throughout any other color. The head, legs, mane, and tail have fewer scattered white hairs or none at all. The roan pattern is dominantly inherited, and is found in many horse breeds. While the specific mutation responsible for roan has not been exactly identified, a DNA test can determine zygosity for roan in several breeds. True roan is always present at birth, though it may be hard to see until after the foal coat sheds out. The coat may lighten or darken from winter to summer, but unlike the gray coat color, which also begins with intermixed white and colored hairs, roans do not become progressively lighter in color as they age. The silvering effect of mixed white and colored hairs can create coats that look bluish or pinkish.
Flaxen is a genetic trait in which the mane and tail of chestnut-colored horses are noticeably lighter than the body coat color, often a golden blonde shade. Manes and tails can also be a mixture of darker and lighter hairs. Certain horse breeds such as the Haflinger carry flaxen chestnut coloration as a breed trait. It is seen in chestnut-colored animals of other horse breeds that may not be exclusively chestnut.
The agouti gene, the Agouti-signaling protein (ASIP) is responsible for variations in color in many species. Agouti works with extension to regulate the color of melanin which is produced in hairs. The agouti protein causes red to yellow pheomelanin to be produced, while the competing molecule α-MSH signals production of brown to black eumelanin. In wildtype mice, alternating cycles of agouti and α-MSH production cause agouti coloration. Each hair has bands of yellow which grew during agouti production, and black which grew during α-MSH production. Wildtype mice also have light-colored bellies. The hairs there are a creamy color the whole length because the agouti protein was produced the whole time the hairs were growing.
The statistical analysis of 1369 offspring from five stallions indicate, that darker shades of basic color phenotypes (dark chestnut, dark bay) follow a recessive mode of inheritance in the Franches-Montagnes horse breed.
The eyes and skin of palominos and buckskins are often slightly lighter than their non-dilute equivalents.
Within the tested chestnut coloured horse population, no association between both alleles e respectively ea and one of the variable chestnut phenotypes could be observed. Different individuals regarding to the shade of their chestnut coat colour were found in every group of the genotypes (e/e), (e/ea) and (ea/ea).