Blepharismidae

Last updated

Blepharismidae
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Clade: Diaphoretickes
Clade: SAR
Clade: Alveolata
Phylum: Ciliophora
Class: Heterotrichea
Order: Heterotrichida
Family: Blepharismidae
Jankowski in Small & Lynn, 1985
Species [1]

Blepharismidae is a family of unicellular ciliate protists found in fresh and salt water. Two genera are recognized: Blepharisma , which contains some model organisms, and Pseudoblepharisma (monotypic in most sources) [1] [2]

Parablepharisma was part of the family, but more careful inspection (morphological and molecular) has placed it in a separate class distinct from the heterotrichs. [3] Acquisition of ribosomal sequences from Pseudoblepharisma in 2021 and 2022 also produces phylogenetic results incongruent with current taxonomy, instead placing the genus sister to Spirostomum . [4]

Related Research Articles

<span class="mw-page-title-main">Alveolate</span> Superphylum of protists

The alveolates are a group of protists, considered a major clade and superphylum within Eukarya. They are currently grouped with the stramenopiles and Rhizaria among the protists with tubulocristate mitochondria into the SAR supergroup.

<span class="mw-page-title-main">Heterotrich</span> Class of single-celled organisms

The heterotrichs are a class of ciliates. They typically have a prominent adoral zone of membranelles circling the mouth, used in locomotion and feeding, and shorter cilia on the rest of the body. Many species are highly contractile, and are typically compressed or conical in form. These include some of the largest protozoa, such as Stentor and Spirostomum, as well as many brightly pigmented forms, such as certain Blepharisma.

<i>Blepharisma</i> Genus of single-celled organisms

Blepharisma is a genus of unicellular ciliate protists found in fresh and salt water. The group includes about 40 accepted species, and many sub-varieties and strains. While species vary considerably in size and shape, most are easily identified by their red or pinkish color, which is caused by granules of the pigment blepharismin.

<i>Stentor</i> (ciliate) Genus of single-celled organisms

Stentor, sometimes called trumpet animalcules, are a genus of filter-feeding, heterotrophic ciliates, representative of the heterotrichs. They are usually horn-shaped, and reach lengths of two millimeters; as such, they are among the largest known extant unicellular organisms. They reproduce asexually through binary fission.

<i>Spirostomum</i> Genus of ciliated protists

Spirostomum is a genus of ciliated protists in the class Heterotrichea. It is known for being very contractile. Having been first identified by Christian Gottfried Ehrenberg in 1834, further research has identified eight additional true morphospecies. This bacterivore genus mainly lives in the sediment deposits at the bottom of various aquatic habitats, and members possess rquA genes that could be responsible for their ability to survive in these hypoxic and anoxic environments. They are identifiable by their relatively large tubular/flat vermiform bodies. Their life cycle consists of a growth stage, in which they mature, and asexual and sexual reproduction stages. Some species are model organisms for studies on human pathogenic bacteria, while others are sensitive and accurate bioindicators for toxic substances.

<i>Colpoda</i> Genus of single-celled organisms

Colpoda is a genus of ciliates in the class Colpodea, order Colpodida, and family Colpodidae.

Karyorelictea is a class of ciliates in the subphylum Postciliodesmatophora. Most species are members of the microbenthos community, that is, microscopic organisms found in the marine interstitial habitat, though one genus, Loxodes, is found in freshwater.

<span class="mw-page-title-main">Prostomatea</span> Class of single-celled organisms

Prostomatea is a class of ciliates. It includes the genera Coleps and Pelagothrix.

<span class="mw-page-title-main">Ciliate</span> Taxon of protozoans with hair-like organelles called cilia

The ciliates are a group of alveolates characterized by the presence of hair-like organelles called cilia, which are identical in structure to eukaryotic flagella, but are in general shorter and present in much larger numbers, with a different undulating pattern than flagella. Cilia occur in all members of the group and are variously used in swimming, crawling, attachment, feeding, and sensation.

<i>Frontonia</i> Genus of single-celled organisms

Frontonia is a genus of free-living unicellular ciliate protists, belonging to the order Peniculida. As Peniculids, the Frontonia are closely related to members of the genus Paramecium. However, whereas Paramecia are mainly bacterivores, Frontonia are capable of ingesting large prey such as diatoms, filamentous algae, testate amoebas, and even, in some circumstances, members of their own species. In bacteria-rich saprobic conditions, Frontonia leucas can live as a facultative bacterivore.

<i>Climacostomum</i> Genus of single-celled organisms

Climacostomum is a genus of unicellular ciliates, belonging to the class Heterotrichea.

<span class="mw-page-title-main">Mobilida</span> Order of protists belonging to the ciliates phylum

Mobilida is a group of parasitic or symbiotic peritrich ciliates, comprising more than 280 species. Mobilids live on or within a wide variety of aquatic organisms, including fish, amphibians, molluscs, cnidarians, flatworms and other ciliates, attaching to their host organism by means of an aboral adhesive disk. Some mobilid species are pathogens of wild or farmed fish, causing severe and economically damaging diseases such as trichodinosis.

<i>Colpidium colpoda</i> Species of protozoan

Colpidium colpoda are free-living ciliates commonly found in many freshwater environments including streams, rivers, lakes and ponds across the world. Colpidium colpoda is also frequently found inhabiting wastewater treatment plants. This species is used as an indicator of water quality and waste treatment plant performance.

<span class="mw-page-title-main">Condylostoma</span> Genus of protists belonging to the ciliates phylum

Condylostoma is a genus of unicellular ciliate protists, belonging to the class Heterotrichea.

<span class="mw-page-title-main">Intramacronucleata</span> Subphylum of single-celled organisms

Intramacronucleata is a subphylum of ciliates. The group is characterized by the manner in which division of the macronucleus is accomplished during binary fission of the cell. In ciliates of this subphylum, division of the macronucleus is achieved by the action of microtubules which are assembled inside the macronucleus itself. This is in contrast to heterotrich ciliates of the subphylum Postciliodesmatophora, in which division of the macronucleus relies on microtubules formed outside the macronuclear envelope.

<span class="mw-page-title-main">Armophorea</span> Class of single-celled organisms

Armophorea is a class of ciliates in the subphylum Intramacronucleata. . It was first resolved in 2004 and comprises three orders: Metopida, Clevelandellida, and Armophorida. Previously members of this class were thought to be heterotrichs because of similarities in morphology, most notably a characteristic dense arrangement of cilia surrounding their oral structures. However, the development of genetic tools and subsequent incorporation of DNA sequence information has led to major revisions in the evolutionary relationships of many protists, including ciliates. Metopids, clevelandellids, and armophorids were grouped into this class based on similarities in their small subunit rRNA sequences, making them one of two so-called "riboclasses" of ciliates, however, recent analyses suggest that Armophorida may not be related to the other two orders.

<i>Licnophora</i> Genus of single-celled organisms

Licnophora is a genus of ciliates in the family Licnophoridae. They typically have an hourglass-like shape and live as ectocommensals on marine animals.

Parablepharismea is a class of free-living marine and brackish anaerobic ciliates that form a major clade of obligate anaerobes within the SAL group, together with the classes Muranotrichea and Armophorea.

<i>Halteria</i> Genus of single-celled organisms

Halteria, sometimes referred to as the jumping oligotrich, is a genus of common planktonic ciliates that are found in many freshwater environments. Halteria are easy to locate due to their abundance and distinctive behaviour with observations of Halteria potentially dating back to the 17th century and the discovery of microorganisms. Over time more has been established about their morphology and behavior, which has led to many changes in terms of classification.

<i>Paramecium biaurelia</i> Species of parasitic protist

Paramecium biaurelia is a species of unicellular ciliates under the genus Paramecium, and one of the cryptic species of Paramecium aurelia. It is a free-living protist in water bodies and harbours several different bacteria as endosymbionts. Although the bacteria are parasites by definition, they also exhibit mutual relationship with the protist by providing survival benefits. It is used as an organism model in the study of the effects of gravitational forces in different environments.

References

  1. 1 2 "Blepharismidae". WoRMS. World Register of Marine Species . Retrieved 12 August 2022.
  2. Chi, Yong; Chen, Xiangrui; Li, Yuqing; Wang, Chundi; Zhang, Tengteng; Ayoub, Alex; Warren, Alan; Song, Weibo; Wang, Yuanyuan (1 April 2021). "New contributions to the phylogeny of the ciliate class Heterotrichea (Protista, Ciliophora): analyses at family-genus level and new evolutionary hypotheses". Science China Life Sciences. 64 (4): 606–620. doi:10.1007/s11427-020-1817-5. PMID   33068287. S2CID   223558791.
  3. Campello-Nunes, Pedro H.; Fernandes, Noemi M.; Szokoli, Franziska; Fokin, Sergei I.; Serra, Valentina; Modeo, Letizia; Petroni, Giulio; Soares, Carlos A. G.; Paiva, Thiago da S.; Silva-Neto, Inácio D. da (2020-04-01). "Parablepharisma (Ciliophora) is not a Heterotrich: A Phylogenetic and Morphological Study with the Proposal of New Taxa". Protist. 171 (2): 125716. doi:10.1016/j.protis.2020.125716. ISSN   1434-4610. PMID   32086115. S2CID   211246127.
  4. Muñoz-Gómez, SA; Kreutz, M; Hess, S (June 2021). "A microbial eukaryote with a unique combination of purple bacteria and green algae as endosymbionts". Science Advances. 7 (24). Bibcode:2021SciA....7.4102M. doi: 10.1126/sciadv.abg4102 . PMC   8195481 . PMID   34117067.