Branched DNA assay

Last updated

In biology, a branched DNA assay is a signal amplification assay (as opposed to a target amplification assay) that is used to detect nucleic acid molecules. [1]

Contents

Method

A branched DNA assay begins with a dish or some other solid support (e.g., a plastic dipstick). The dish is peppered with small, single stranded DNA molecules (or chains) that stick out into the solution. These are known as capture probe DNA molecules. Next, an extender DNA molecule is added. Each extender has two domains; one that hybridizes to the capture DNA molecule and one that sticks out above the surface. The purpose of the extender is two-fold. First, it creates more available surface area for target DNA molecules to bind, and second, it allows the assay to be easily adapted to detect a variety of target DNA molecules.

Once the capture and extender molecules are in place and they have hybridized, the sample can be added. Target molecules in the sample will bind to the extender molecule. This results in a base peppered with capture probes, which are hybridized to extender probes, which in turn are hybridized to target molecules.

At this point, signal amplification takes place. A label extender DNA molecule is added that has two domains (similar to the first extender). The label extender hybridizes to the target and to a pre-amplified molecule. The preamplifier molecule has two domains. First, it binds to the label extender and second, it binds to the amplifier molecule. An example amplifier molecule is an oligonucleotide chain bound to the enzyme alkaline phosphatase.

Diagrammatically, the process can be resembled as
Base → Capture Probe → Extender → Target → label extender → pre-amplifier → amplifier

Uses and Advantages

The assay can be used to detect and quantify many types of RNA or DNA target. In the assay, branched DNA is mixed with a sample to be tested. The detection is done using a non-radioactive method and does not require preamplification of the nucleic acid to be detected. The assay entirely relies on hybridization. Enzymes are used to indicate the extent of hybridization but are not used to manipulate the nucleic acids. Thus, small amounts of a nucleic acid can be detected and quantified without a reverse transcription step (in the case of RNA) and/or PCR. The assay can be run as a high throughput assay, unlike quantitative Northern-blotting or the RNAse-protection assay, which are labor-intensive and thus difficult to perform on a large number of samples. The other major high throughput technique employed in the quantification of specific RNA molecules is quantitative PCR, after reverse transcription of the RNA to cDNA.

Several different short single-stranded DNA molecules (oligonucleotides) are used in a branched DNA-assay. The capture and capture-extender oligonucleotide bind to the target nucleic acid and immobilize it on a solid support. The label oligonucleotide and the branched DNA then detects the immobilized target nucleic acid. The immobilization of the target on a solid support makes extensive washing easier, which reduces false positive results. After binding of the target to the solid support it can be detected by branched DNA which is coupled to an enzyme (e.g. alkaline phosphatase). The branched DNA binds to the sample nucleic acid by specific hybridization in areas which are not occupied by capture hybrids. The branching of the DNA allows for very dense decorating of the DNA with the enzyme, which is important for the high sensitivity of the assay[ citation needed ]. The enzyme catalyzes a reaction of a substrate which generates light (detectable in a luminometer). The amount of light emitted increases with the amount of the specific nucleic acid present in the sample. The design of the branched DNA and the way it is hybridized to the nucleic acid to be investigated differs between different generations of the bDNA assay. [2] Despite the fact that the starting material is not preamplified, bDNA assays can detect less than 100 copies of HIV-RNA per mL of blood. [2] A recent publication in Nature Scientific Reports uses levels of cfDNA as a predictor of chemotherapy efficacy in treatment of advanced cancers, and uses the branched DNA approach to amplify signal of the trace occurring cfDNA. [3]

See also

Notes and references

  1. Ariffin, Siti Noor Fathilah Ahmad (2013). "Branched DNA: A Novel Technique for Molecular Diagnostics in Bone Studies". Research Updates in Medical Sciences (RUMeS). 1 (1): 27–29.
  2. 1 2 Collins, M. L.; Irvine, B.; Tyner, D.; Fine, E.; Zayati, C.; Chang, C.; Horn, T.; Ahle, D.; Detmer, J.; Shen, L. P.; Kolberg, J.; Bushnell, S.; Urdea, M. S.; Ho, D. D. (1997). "A branched DNA signal amplification assay for quantification of nucleic acid targets below 100 molecules/ml". Nucleic Acids Research. 25 (15): 2979–2984. doi:10.1093/nar/25.15.2979. PMC   146852 . PMID   9224596.
  3. Zhou, Xiaorong; Li, Chenchen; Zhang, Zhao; Li, Daniel Y.; Du, Jinwei; Ding, Ping; Meng, Haiyan; Xu, Hui; Li, Ronglei; Ho, Effie; Zhang, Aiguo (2021-04-07). "Kinetics of plasma cfDNA predicts clinical response in non-small cell lung cancer patients". Scientific Reports. 11 (1): 7633. Bibcode:2021NatSR..11.7633Z. doi:10.1038/s41598-021-85797-z. ISSN   2045-2322. PMC   8027214 . PMID   33828112.

Related Research Articles

<span class="mw-page-title-main">Southern blot</span> DNA analysis technique

Southern blot is a method used for detection and quantification of a specific DNA sequence in DNA samples. This method is used in molecular biology. Briefly, purified DNA from a biological sample is digested with restriction enzymes, and the resulting DNA fragments are separated by using an electric current to move them through a sieve-like gel or matrix, which allows smaller fragments to move faster than larger fragments. The DNA fragments are transferred out of the gel or matrix onto a solid membrane, which is then exposed to a DNA probe labeled with a radioactive, fluorescent, or chemical tag. The tag allows any DNA fragments containing complementary sequences with the DNA probe sequence to be visualized within the Southern blot.

Oligonucleotides are short DNA or RNA molecules, oligomers, that have a wide range of applications in genetic testing, research, and forensics. Commonly made in the laboratory by solid-phase chemical synthesis, these small bits of nucleic acids can be manufactured as single-stranded molecules with any user-specified sequence, and so are vital for artificial gene synthesis, polymerase chain reaction (PCR), DNA sequencing, molecular cloning and as molecular probes. In nature, oligonucleotides are usually found as small RNA molecules that function in the regulation of gene expression, or are degradation intermediates derived from the breakdown of larger nucleic acid molecules.

Viral load, also known as viral burden, is a numerical expression of the quantity of virus in a given volume of fluid, including biological and environmental specimens. It is not to be confused with viral titre or viral titer, which depends on the assay. When an assay for measuring the infective virus particle is done, viral titre often refers to the concentration of infectious viral particles, which is different from the total viral particles. Viral load is measured using body fluids Sputum and blood plasma. As an example of environmental specimens, the viral load of norovirus can be determined from run-off water on garden produce. Norovirus has not only prolonged viral shedding and has the ability to survive in the environment but a minuscule infectious dose is required to produce infection in humans: less than 100 viral particles.

<span class="mw-page-title-main">DNA microarray</span> Collection of microscopic DNA spots attached to a solid surface

A DNA microarray is a collection of microscopic DNA spots attached to a solid surface. Scientists use DNA microarrays to measure the expression levels of large numbers of genes simultaneously or to genotype multiple regions of a genome. Each DNA spot contains picomoles of a specific DNA sequence, known as probes. These can be a short section of a gene or other DNA element that are used to hybridize a cDNA or cRNA sample under high-stringency conditions. Probe-target hybridization is usually detected and quantified by detection of fluorophore-, silver-, or chemiluminescence-labeled targets to determine relative abundance of nucleic acid sequences in the target. The original nucleic acid arrays were macro arrays approximately 9 cm × 12 cm and the first computerized image based analysis was published in 1981. It was invented by Patrick O. Brown. An example of its application is in SNPs arrays for polymorphisms in cardiovascular diseases, cancer, pathogens and GWAS analysis. It is also used for the identification of structural variations and the measurement of gene expression.

<span class="mw-page-title-main">Blot (biology)</span>

A blot, in molecular biology and genetics, is a method of transferring proteins, DNA or RNA onto a carrier. In many instances, this is done after a gel electrophoresis, transferring the molecules from the gel onto the blotting membrane, and other times adding the samples directly onto the membrane. After the blotting, the transferred proteins, DNA or RNA are then visualized by colorant staining, autoradiographic visualization of radiolabelled molecules, or specific labelling of some proteins or nucleic acids. The latter is done with antibodies or hybridization probes that bind only to some molecules of the blot and have an enzyme joined to them. After proper washing, this enzymatic activity is visualized by incubation with proper reactive, rendering either a colored deposit on the blot or a chemiluminescent reaction which is registered by photographic film.

In molecular biology, a hybridization probe(HP) is a fragment of DNA or RNA of usually 15–10000 nucleotide long which can be radioactively or fluorescently labeled. HP can be used to detect the presence of nucleotide sequences in analyzed RNA or DNA that are complementary to the sequence in the probe. The labeled probe is first denatured (by heating or under alkaline conditions such as exposure to sodium hydroxide) into single stranded DNA (ssDNA) and then hybridized to the target ssDNA (Southern blotting) or RNA (northern blotting) immobilized on a membrane or in situ.

Cycling probe technology (CPT) is a molecular biological technique for detecting specific DNA sequences. CPT operates under isothermal conditions. In some applications, CPT offers an alternative to PCR. However, unlike PCR, CPT does not generate multiple copies of the target DNA itself, and the amplification of the signal is linear, in contrast to the exponential amplification of the target DNA in PCR. CPT uses a sequence specific chimeric probe which hybridizes to a complementary target DNA sequence and becomes a substrate for RNase H. Cleavage occurs at the RNA internucleotide linkages and results in dissociation of the probe from the target, thereby making it available for the next probe molecule. Integrated electrokinetic systems have been developed for use in CPT.

Fluorescence <i>in situ</i> hybridization Genetic testing technique

Fluorescence in situ hybridization (FISH) is a molecular cytogenetic technique that uses fluorescent probes that bind to only particular parts of a nucleic acid sequence with a high degree of sequence complementarity. It was developed by biomedical researchers in the early 1980s to detect and localize the presence or absence of specific DNA sequences on chromosomes. Fluorescence microscopy can be used to find out where the fluorescent probe is bound to the chromosomes. FISH is often used for finding specific features in DNA for use in genetic counseling, medicine, and species identification. FISH can also be used to detect and localize specific RNA targets in cells, circulating tumor cells, and tissue samples. In this context, it can help define the spatial-temporal patterns of gene expression within cells and tissues.

<i>In situ</i> hybridization

In situ hybridization (ISH) is a type of hybridization that uses a labeled complementary DNA, RNA or modified nucleic acids strand to localize a specific DNA or RNA sequence in a portion or section of tissue or if the tissue is small enough, in the entire tissue, in cells, and in circulating tumor cells (CTCs). This is distinct from immunohistochemistry, which usually localizes proteins in tissue sections.

<span class="mw-page-title-main">Real-time polymerase chain reaction</span> Laboratory technique of molecular biology

A real-time polymerase chain reaction is a laboratory technique of molecular biology based on the polymerase chain reaction (PCR). It monitors the amplification of a targeted DNA molecule during the PCR, not at its end, as in conventional PCR. Real-time PCR can be used quantitatively and semi-quantitatively.

<span class="mw-page-title-main">Electrophoretic mobility shift assay</span>

An electrophoretic mobility shift assay (EMSA) or mobility shift electrophoresis, also referred as a gel shift assay, gel mobility shift assay, band shift assay, or gel retardation assay, is a common affinity electrophoresis technique used to study protein–DNA or protein–RNA interactions. This procedure can determine if a protein or mixture of proteins is capable of binding to a given DNA or RNA sequence, and can sometimes indicate if more than one protein molecule is involved in the binding complex. Gel shift assays are often performed in vitro concurrently with DNase footprinting, primer extension, and promoter-probe experiments when studying transcription initiation, DNA gang replication, DNA repair or RNA processing and maturation, as well as pre-mRNA splicing. Although precursors can be found in earlier literature, most current assays are based on methods described by Garner and Revzin and Fried and Crothers.

<span class="mw-page-title-main">Molecular beacon</span>

Molecular beacons, or molecular beacon probes, are oligonucleotide hybridization probes that can report the presence of specific nucleic acids in homogenous solutions. Molecular beacons are hairpin-shaped molecules with an internally quenched fluorophore whose fluorescence is restored when they bind to a target nucleic acid sequence. This is a novel non-radioactive method for detecting specific sequences of nucleic acids. They are useful in situations where it is either not possible or desirable to isolate the probe-target hybrids from an excess of the hybridization probes.

<span class="mw-page-title-main">RNA spike-in</span>

An RNA spike-in is an RNA transcript of known sequence and quantity used to calibrate measurements in RNA hybridization assays, such as DNA microarray experiments, RT-qPCR, and RNA-Seq.

SNP genotyping is the measurement of genetic variations of single nucleotide polymorphisms (SNPs) between members of a species. It is a form of genotyping, which is the measurement of more general genetic variation. SNPs are one of the most common types of genetic variation. An SNP is a single base pair mutation at a specific locus, usually consisting of two alleles. SNPs are found to be involved in the etiology of many human diseases and are becoming of particular interest in pharmacogenetics. Because SNPs are conserved during evolution, they have been proposed as markers for use in quantitative trait loci (QTL) analysis and in association studies in place of microsatellites. The use of SNPs is being extended in the HapMap project, which aims to provide the minimal set of SNPs needed to genotype the human genome. SNPs can also provide a genetic fingerprint for use in identity testing. The increase of interest in SNPs has been reflected by the furious development of a diverse range of SNP genotyping methods.

An allele-specific oligonucleotide (ASO) is a short piece of synthetic DNA complementary to the sequence of a variable target DNA. It acts as a probe for the presence of the target in a Southern blot assay or, more commonly, in the simpler Dot blot assay. It is a common tool used in genetic testing, forensics, and Molecular Biology research.

<span class="mw-page-title-main">Nucleic acid test</span> Group of techniques to detect a particular nucleic acid sequence

A nucleic acid test (NAT) is a technique used to detect a particular nucleic acid sequence and thus usually to detect and identify a particular species or subspecies of organism, often a virus or bacterium that acts as a pathogen in blood, tissue, urine, etc. NATs differ from other tests in that they detect genetic materials rather than antigens or antibodies. Detection of genetic materials allows an early diagnosis of a disease because the detection of antigens and/or antibodies requires time for them to start appearing in the bloodstream. Since the amount of a certain genetic material is usually very small, many NATs include a step that amplifies the genetic material—that is, makes many copies of it. Such NATs are called nucleic acid amplification tests (NAATs). There are several ways of amplification, including polymerase chain reaction (PCR), strand displacement assay (SDA), or transcription mediated assay (TMA).

A Riboprobe, abbreviation of RNA probe, is a segment of labelled RNA that can be used to detect a target mRNA or DNA during in situ hybridization. RNA probes can be produced by in vitro transcription of cloned DNA inserted in a suitable plasmid downstream of a viral promoter. Some bacterial viruses code for their own RNA polymerases, which are highly specific for the viral promoters. Using these enzymes, labeled NTPs, and inserts inserted in both forward and reverse orientations, both sense and antisense riboprobes can be generated from a cloned gene.

<span class="mw-page-title-main">MAGIChip</span>

MAGIChips, also known as "microarrays of gel-immobilized compounds on a chip" or "three-dimensional DNA microarrays", are devices for molecular hybridization produced by immobilizing oligonucleotides, DNA, enzymes, antibodies, and other compounds on a photopolymerized micromatrix of polyacrylamide gel pads of 100x100x20µm or smaller size. This technology is used for analysis of nucleic acid hybridization, specific binding of DNA, and low-molecular weight compounds with proteins, and protein-protein interactions.

Suspension array technology is a high throughput, large-scale, and multiplexed screening platform used in molecular biology. SAT has been widely applied to genomic and proteomic research, such as single nucleotide polymorphism (SNP) genotyping, genetic disease screening, gene expression profiling, screening drug discovery and clinical diagnosis. SAT uses microsphere beads to prepare arrays. SAT allows for the simultaneous testing of multiple gene variants through the use of these microsphere beads as each type of microsphere bead has a unique identification based on variations in optical properties, most common is fluorescent colour. As each colour and intensity of colour has a unique wavelength, beads can easily be differentiated based on their wavelength intensity. Microspheres are readily suspendable in solution and exhibit favorable kinetics during an assay. Similar to flat microarrays, an appropriate receptor molecule, such as DNA oligonucleotide probes, antibodies, or other proteins, attach themselves to the differently labeled microspheres. This produces thousands of microsphere array elements. Probe-target hybridization is usually detected by optically labeled targets, which determines the relative abundance of each target in the sample.

A hybridization assay comprises any form of quantifiable hybridization i.e. the quantitative annealing of two complementary strands of nucleic acids, known as nucleic acid hybridization.