British Rail Telecommunications

Last updated

British Rail Telecommunications was created in 1992 by British Rail (BR). It was the largest private telecoms network in Britain, consisting of 17,000 route kilometres of fibre optic and copper cable which connected every major city and town in the country and provided links to continental Europe through the Channel Tunnel. [1]

Contents

BR also operated its own national trunked radio network, providing dedicated train-to-shore mobile communications, and in the early 1980s BR helped establish Mercury Communications’ (now Vodafone) core infrastructure by laying a resilient figure-of-eight fibre optic network alongside Britain's railway lines, spanning London, Bristol, Birmingham, Leeds and Manchester.

Realising the enormous commercial potential, BR Telecommunications Limited (BRT) was created in 1992 to exploit its wayleave rights and to take responsibility for the management and maintenance of the industry's voice, data and radio networks associated with the operational running of the railway and its business needs.

BRT was bought by Racal Electronics in 1995 and became Racal-BRT. This merged with Racal Network Services (RNS) in 1997 to become Racal Telecom. Two companies, Thales Translink and Thales Fieldforce, evolved from Racal Telecom in 1999 and were merged into Thales Telecommunications Services (TTS) in April 2002. TTS provides specialist telecoms services to the UK transport market.

On 1 April 2009, under TUPE employment regulations, around 480 telecoms experts moved from Thales to Network Rail to maintain the telecoms network.

Early history

In May 1837 William Fothergill Cooke (1806–1879) and Professor Charles Wheatstone (1802–1875) entered into a partnership, and on 10 June patented a five-needle telegraph for which five wires were necessary. The telegraph worked by deflecting any two of the needles at the same time to point to any one of 20 letters on the grid behind the needle. Sending and receiving messages was a slow process, as each word had to be spelt out. With only 20 letters on the grid, the spelling sometimes contained inaccuracies. On 25 July, Wheatstone's and Cooke's telegraph was demonstrated to the directors of the London and Birmingham Railway between Euston and Camden Town, a distance of just under a mile.

In 1839 the world's first commercial telegraph line using the Cooke and Wheatstone five-needle system was commissioned by the Great Western Railway and built between Paddington and West Drayton, a distance of 13 miles. It was working to Hanwell by 6 April and was completed to West Drayton on 9 April. The public could pay one shilling (5p) to view the telegraph and could send their own telegrams. The undertaking marked the first commercial use of electricity. The line was later extended to Slough, but when it was proposed to carry it to Bristol, the Directors of the railway company objected and the agreement with Cooke and Wheatstone was rejected. Eventually, it was agreed that Cooke was allowed to retain the wires in position on condition that he worked the system at his own expense and sent the railway signals free of charge.

Assets

This section briefly describes the assets that constitute British Rail's telecom systems and networks.

The fixed bearer network is at the core of railway communications and thus is vital to the operation of the railway. It provides essential circuits for signalling and electrification control systems, train radio systems, lineside communications, level crossing CCTV, and customer information systems as well as more general IT and business telephony needs.

The fixed bearer network infrastructure comprises transmission systems and telephone exchanges, linked by a fibre optic and copper cable network that is located mainly within trackside troughing routes.

British Rail had several analogue radio networks that supported mobile communication applications for drivers and lineside workers. These radio networks consist of base stations, antenna systems and control equipment. The National Radio Network (NRN) was developed specifically for the operational railway; it provides radio coverage for 98% of the rail network through 500 base stations and 21 radio exchanges.

The NRN offers full access to the BRT telephone network; public service telephone network (PSTN) dialling, including international, is also available. It can provide dedicated open channels on talk-through mode for incident management and an override priority facility to ensure that emergency calls are immediately connected to the railway's Train Control Offices (TCO) and Electrical Control Rooms (ECR). The NRN and ORN[ clarification needed ] are based on analogue radio technology and provide a high level of coverage throughout the railway network for mobile communication at the trackside. The ORN offers facilities for driver emergency communication with the local train control office. The RETB system is based on similar technology as the NRN and ORN but provides data communication for signalling token block exchange as well as voice communication.

Secure communication between drivers and signallers is provided by the Cab Secure Radio (CSR) systems located in various parts of the country. This application of analogue radio technology is designed to offer complete radio coverage at the trackside within the limits of its deployment. Fixed communication at the trackside is provided by lineside communication systems. These systems are primarily provided for signallers' communication with drivers and the public, through telephones located on signal posts and at level crossings.

Signal Post Telephones (SPTs) and other lineside phones are linked to telephone concentrators at the signal box. [2]

Special self-monitoring systems (PETS) are also provided for high-risk level crossings. [3]

CCTV systems are provided on platforms where driver-only operation train services call and at some stations with sub-surface platforms. These self-contained systems comprise cameras, monitors, cabling and control equipment.

Voice recorders are also classed as telecoms assets.

Management and maintenance

In the late 1960s the National Telecoms Plan (NTP) was launched which brought about a centrally managed (BRHQ) project to install a nationwide co-axial cable based 4 MHz system of transmission bearer services for voice and on-line real time data networks. This was completed in 1972.

The fixed network as we know it today was installed piecemeal as part of BR's electrification and signalling projects between 1972 and 1993.

Fault reporting is localised and system failure is generally only uncovered as a consequence of customer complaint. The fixed telecommunications network consists of a wide variety of mostly old technologies, some of which are obsolete.

As a result of the privatisation process, a significant proportion of the fixed telecommunications network is now[ needs update? ] provided through lease agreements with Global Crossing and it is maintained by the former BRT.

GSM-R

GSM-R radio systems are being introduced across Europe under EU legislation for interoperability. In the UK, Network Rail has established a stakeholder's board with cross industry representation to drive the UK implementation of GSM-R to replace the National Radio Network (NRN) and Cab Secure Radio (CSR) systems currently in use.

The Rail Safety and Standards Board are revising the current train-to-shore radio standard GO/RT3410, renumbering it as GE/RT8080, and developing a new standard GE/RT8081 that contains requirements that are specific to GSM-R. The Railway Group Standards are being developed to support the European Functional Requirements Specification and should be read in conjunction with this document. [4]

The Network Rail National Project for the introduction of GSM-R plans for the radio service to be live nationwide by 2007, with the current radio systems switched off at the end of 2009. Britain's GSM-R network should be fully operational by 2013 at a cost of £1.2 billion. This cost though does not include the West Coast Main Line, where transmission equipment supplied by Marconi is maintained by Telent. [5]

GSM-R addresses the relevant recommendations from several accident inquiries:

GSM-R is the bearer for the ERTMS signalling being introduced from 2010. [6]

Locomotives

British Rail Telecommunications operated four British Rail Class 20 locomotives: 20075, 20128, 20131 and 20187. [7]

Related Research Articles

<span class="mw-page-title-main">Electrical telegraph</span> Early system for transmitting text over wires

Electrical telegraphs were point-to-point text messaging systems, primarily used from the 1840s until the late 20th century. It was the first electrical telecommunications system and the most widely used of a number of early messaging systems called telegraphs, that were devised to communicate text messages quicker than physical transportation. Electrical telegraphy can be considered to be the first example of electrical engineering.

With Macau's small population and market, only a few media options are available for the local people. Because radio signals, newspapers and magazines from Hong Kong are available in Macau, the local media are always a minority group in terms of sales and number of viewers.

Nepal's telecommunication network has increased over the years significantly, with the number of telephone users reaching 40,789,198 subscribers as of 14 May 2019.

<span class="mw-page-title-main">Telegraphy</span> Long distance transmission of text

Telegraphy is the long-distance transmission of messages where the sender uses symbolic codes, known to the recipient, rather than a physical exchange of an object bearing the message. Thus flag semaphore is a method of telegraphy, whereas pigeon post is not. Ancient signalling systems, although sometimes quite extensive and sophisticated as in China, were generally not capable of transmitting arbitrary text messages. Possible messages were fixed and predetermined and such systems are thus not true telegraphs.

Turkmenistan has a state-controlled press and monitored communication systems. Turkmenistan's telecommunications services are considered to be the least developed of all the Commonwealth of Independent States (CIS) countries. Overall, the telecom market in this predominantly rural country is relatively small but has been trying boldly to expand in recent years. The state-owned Turkmen Telecom has been the primary provider of public telephone, email and internet services, and through a subsidiary has been operating a GSM mobile network in competition with a private mobile operator, BCTI.

Telecommunications in the United Kingdom have evolved from the early days of the telegraph to modern broadband and mobile phone networks with Internet services.

In a telecommunications network, a link is a communication channel that connects two or more devices for the purpose of data transmission. The link may be a dedicated physical link or a virtual circuit that uses one or more physical links or shares a physical link with other telecommunications links.

<span class="mw-page-title-main">Network Rail</span> State-owned company that manages rail infrastructure in Great Britain

Network Rail Limited is the owner and infrastructure manager of most of the railway network in Great Britain. Network Rail is an "arm's length" public body of the Department for Transport with no shareholders, which reinvests its income in the railways.

<span class="mw-page-title-main">Racal</span> 1950–2000 British electronics company

Racal Electronics plc was a British electronics company that was founded in 1950.

The signalling system used on the rail transport in Norway is regulated by the Regulations of December 4, 2001 no. 1336 about signals and signs on the state's railway network and connected private tracks.

<span class="mw-page-title-main">GSM-R</span> Wireless communications standard for railway communication

GSM-R, Global System for Mobile Communications – Railway or GSM-Railway is an international wireless communications standard for railway communication and applications.

<span class="mw-page-title-main">William Fothergill Cooke</span> 19th-century telegraph pioneer

Sir William Fothergill Cooke was an English inventor. He was, with Charles Wheatstone, the co-inventor of the Cooke-Wheatstone electrical telegraph, which was patented in May 1837. Together with John Ricardo he founded the Electric Telegraph Company, the world's first public telegraph company, in 1846. He was knighted in 1869.

<span class="mw-page-title-main">European Train Control System</span> Railway signaling system

The European Train Control System (ETCS) is the signalling and control component of the European Rail Traffic Management System (ERTMS). It is a replacement for legacy train protection systems and designed to replace the many incompatible safety systems currently used by European railways. The standard was also adopted outside Europe and is an option for worldwide application. In technical terms it is a type of positive train control (PTC).

<span class="mw-page-title-main">Unbalanced line</span>

In telecommunications and electrical engineering in general, an unbalanced line is a pair of conductors intended to carry electrical signals, which have unequal impedances along their lengths and to ground and other circuits. Examples of unbalanced lines are coaxial cable or the historic earth return system invented for the telegraph, but rarely used today. Unbalanced lines are to be contrasted with balanced lines, such as twin-lead or twisted pair which use two identical conductors to maintain impedance balance throughout the line. Balanced and unbalanced lines can be interfaced using a device called a balun.

<span class="mw-page-title-main">History of telecommunication</span> Aspect of history

The history of telecommunication began with the use of smoke signals and drums in Africa, Asia, and the Americas. In the 1790s, the first fixed semaphore systems emerged in Europe. However, it was not until the 1830s that electrical telecommunication systems started to appear. This article details the history of telecommunication and the individuals who helped make telecommunication systems what they are today. The history of telecommunication is an important part of the larger history of communication.

The following outline is provided as an overview of and topical guide to telecommunication:

<span class="mw-page-title-main">Cab Secure Radio</span> British Rail driver/signaller communication system

Cab Secure Radio (CSR) was an in-cab analogue radiotelephone system formerly used on parts of the British railway network. Its main function was to provide a secure speech link between the train driver and the signaller which could not be overheard by other train drivers. In areas where CSR was used, it had to be the primary method of communication between driver and signaller, always being used in preference to the signal post telephone. CSR was replaced by the GSM-R digital system, forming the initial phase of rollout of ERTMS throughout the UK.

<span class="mw-page-title-main">Cooke and Wheatstone telegraph</span> Early electrical telegraph system dating from the 1830s

The Cooke and Wheatstone telegraph was an early electrical telegraph system dating from the 1830s invented by English inventor William Fothergill Cooke and English scientist Charles Wheatstone. It was a form of needle telegraph, and the first telegraph system to be put into commercial service. The receiver consisted of a number of needles which could be moved by electromagnetic coils to point to letters on a board. This feature was liked by early users who were unwilling to learn codes, and employers who did not want to invest in staff training.

The Chinese Train Control System is a train control system used on railway lines in People's Republic of China. CTCS is similar to the European Train Control System (ETCS).

The European Rail Traffic Management System (ERTMS) is an initiative backed by the European Union to enhance cross-border interoperability and the procurement of signalling equipment by creating a single Europe-wide standard for train control and command systems.

References

  1. "History of Thales Telecommunications Services". Archived from the original on 11 May 2013. Retrieved 4 November 2008.
  2. "Signal Post Telephones".
  3. "Public Emergency Telephone System, PETS".
  4. "RSSB Consultation and Stakeholder Register". consultation.rssb.co.uk. Archived from the original on 24 December 2007. Retrieved 22 May 2022.
  5. "Keeping the UK & Ireland's Communications Assets & Data Connected & Protected".
  6. "Cambrian trail signals new era". Rail.co. 7 January 2011. Archived from the original on 27 May 2012.
  7. New owner for BR Telecomms Rail issue 268 20 December 1995 page 15