Brpf1

Last updated
Brpf1
Identifiers
Aliases 4833438B11Rik4930540D11RikBrpf2bromodomain and PHD finger containing1
External IDs HomoloGene: 31251 GeneCards:
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001282126
NM_001282127
NM_001282128
NM_030178

n/a

RefSeq (protein)

NP_001269055
NP_001269056
NP_001269057
NP_084454

n/a

Location (UCSC) Chr 6: 113.28 – 113.3 Mb n/a
PubMed search [1] n/a
Wikidata
View/Edit Human

Peregrin also known as bromodomain and PHD finger-containing protein 1 is a protein that in humans is encoded by the BRPF1 gene located on 3p26-p25. Peregrin is a multivalent chromatin regulator that recognizes different epigenetic marks and activates three histone acetyltransferases ( Moz , Morf and Hbo1 ). BRPF1 contains two PHD fingers, one bromodomain and one chromo/Tudor-related Pro-Trp-Trp-Pro (PWWP) domain.

Contents

Function

Brpf1 forms a stable complex with Moz/Morf-Hbo1 and targets to chromatin to regulate transcription. Mo Shi Tu 1-01-01.tif
Brpf1 forms a stable complex with Moz/Morf-Hbo1 and targets to chromatin to regulate transcription.
Brpf1 null mutant mouse dies at embryonic day 9.5. Forebrain-specific knock out of Brpf1 cause hypoplasia in the dentate gyrus of mouse. Brpf1 name.tif
Brpf1 null mutant mouse dies at embryonic day 9.5. Forebrain-specific knock out of Brpf1 cause hypoplasia in the dentate gyrus of mouse.

Embryo development

Brpf1 gene is very conserved and has a critical role in different developmental processes. [2] [3] [4] Zebrafish BRPF1, which is coordinated by its particular set of PWWP domains, mediates Moz -dependent histone acetylation and maintains Hox genes expression throughout vertebrate development, hence determines the proper pharyngeal segmental identities. [6] Furthermore, Brpf1 may not only has significant role for maintaining the anterior-posterior axis of the craniofacial skeleton, but also the dorsal-ventral axis of the caudal skeleton. [7] Recent studies have shown that ablation of the mouse Brpf1 gene causes embryonic lethality at embryonic day 9.5. [3] [4] Specifically, Brpf1 regulates placenta vascular formation, neural tube closure, primitive hematopoiesis and embryonic fibroblast proliferation. [3] [4]

For the central nervous system, Brpf1 has high expression and is essential for the development of several important structures, including neocortex and dentate gyrus in the hippocampus. [3] Brpf1 is dynamically expressed during forebrain development, especially the hippocampal neurogenesis. [5] Brpf1 shares phenotypes with transcription factors Sox2, Tlx and Tbr2 in dentate gyrus development and has potential link to neural stem cells and progenitors. [5] Except for the forebrain, Brpf1 is also required for the proper patterning of the craniofacial cartilage, which is derived from neural crest cells that migrate from the hindbrain. [8]

Cancer development

Recently, Brpf1 was reported to play the tumor suppressor or oncogenic role in several malignant tumors, including leukemia, medulloblastoma and endometrial stromal sarcoma. [2] [9] [10] [11] Brpf1 was considered a tumor suppressor gene because mutations in cancer cells appear to diminish the function of Brpf1 [9] [10] However, oncogenic role of Brpf1 is also possible in cancer. For example, Brpf1 can form a stable complex with Moz-Tif2, which could lead to the development of human acute myeloid leukemia (AML). [11] There is another Brpf1 related complex Brpf1–Ing5–Eaf6, which also plays a direct role in cancer. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Histone acetyltransferase</span> Enzymes that catalyze acyl group transfer from acetyl-CoA to histones

Histone acetyltransferases (HATs) are enzymes that acetylate conserved lysine amino acids on histone proteins by transferring an acetyl group from acetyl-CoA to form ε-N-acetyllysine. DNA is wrapped around histones, and, by transferring an acetyl group to the histones, genes can be turned on and off. In general, histone acetylation increases gene expression.

<span class="mw-page-title-main">Histone deacetylase</span> Class of enzymes important in regulating DNA transcription

Histone deacetylases (EC 3.5.1.98, HDAC) are a class of enzymes that remove acetyl groups (O=C-CH3) from an ε-N-acetyl lysine amino acid on both histone and non-histone proteins. HDACs allow histones to wrap the DNA more tightly. This is important because DNA is wrapped around histones, and DNA expression is regulated by acetylation and de-acetylation. HDAC's action is opposite to that of histone acetyltransferase. HDAC proteins are now also called lysine deacetylases (KDAC), to describe their function rather than their target, which also includes non-histone proteins. In general, they suppress gene expression.

<span class="mw-page-title-main">Bromodomain</span>

A bromodomain is an approximately 110 amino acid protein domain that recognizes acetylated lysine residues, such as those on the N-terminal tails of histones. Bromodomains, as the "readers" of lysine acetylation, are responsible in transducing the signal carried by acetylated lysine residues and translating it into various normal or abnormal phenotypes. Their affinity is higher for regions where multiple acetylation sites exist in proximity. This recognition is often a prerequisite for protein-histone association and chromatin remodeling. The domain itself adopts an all-α protein fold, a bundle of four alpha helices each separated by loop regions of variable lengths that form a hydrophobic pocket that recognizes the acetyl lysine.

<span class="mw-page-title-main">PHD finger</span>

The PHD finger was discovered in 1993 as a Cys4-His-Cys3 motif in the plant homeodomain proteins HAT3.1 in Arabidopsis and maize ZmHox1a. The PHD zinc finger motif resembles the metal binding RING domain (Cys3-His-Cys4) and FYVE domain. It occurs as a single finger, but often in clusters of two or three, and it also occurs together with other domains, such as the chromodomain and the bromodomain.

<span class="mw-page-title-main">Histone acetylation and deacetylation</span>

Histone acetylation and deacetylation are the processes by which the lysine residues within the N-terminal tail protruding from the histone core of the nucleosome are acetylated and deacetylated as part of gene regulation.

Chromatin remodeling is the dynamic modification of chromatin architecture to allow access of condensed genomic DNA to the regulatory transcription machinery proteins, and thereby control gene expression. Such remodeling is principally carried out by 1) covalent histone modifications by specific enzymes, e.g., histone acetyltransferases (HATs), deacetylases, methyltransferases, and kinases, and 2) ATP-dependent chromatin remodeling complexes which either move, eject or restructure nucleosomes. Besides actively regulating gene expression, dynamic remodeling of chromatin imparts an epigenetic regulatory role in several key biological processes, egg cells DNA replication and repair; apoptosis; chromosome segregation as well as development and pluripotency. Aberrations in chromatin remodeling proteins are found to be associated with human diseases, including cancer. Targeting chromatin remodeling pathways is currently evolving as a major therapeutic strategy in the treatment of several cancers.

<span class="mw-page-title-main">KMT2A</span> Protein-coding gene in the species Homo sapiens

Histone-lysine N-methyltransferase 2A, also known as acute lymphoblastic leukemia 1 (ALL-1), myeloid/lymphoid or mixed-lineage leukemia1 (MLL1), or zinc finger protein HRX (HRX), is an enzyme that in humans is encoded by the KMT2A gene.

<span class="mw-page-title-main">KAT2A</span> Protein-coding gene in the species Homo sapiens

Histone acetyltransferase KAT2A is an enzyme that in humans is encoded by the KAT2A gene.

<span class="mw-page-title-main">KAT5</span> Protein-coding gene in the species Homo sapiens

Histone acetyltransferase KAT5 is an enzyme that in humans is encoded by the KAT5 gene. It is also commonly identified as TIP60.

<span class="mw-page-title-main">KAT6A</span> Protein-coding gene in the species Homo sapiens

K(lysine) acetyltransferase 6A (KAT6A), is an enzyme that, in humans, is encoded by the KAT6A gene. This gene is located on human chromosome 8, band 8p11.21.

<span class="mw-page-title-main">KAT8</span> Protein-coding gene in the species Homo sapiens

K(lysine) acetyltransferase 8 (KAT8) is an enzyme that in humans is encoded by the KAT8 gene.

<span class="mw-page-title-main">KAT6B</span> Protein-coding gene in the species Homo sapiens

K(lysine) acetyltransferase 6B (KAT6B) is an enzyme that in humans is encoded by the KAT6B gene.

<span class="mw-page-title-main">JADE1</span> Protein-coding gene in the species Homo sapiens

JADE1 is a protein that in humans is encoded by the JADE1 gene.

<span class="mw-page-title-main">ASH1L</span> Protein-coding gene in the species Homo sapiens

ASH1L is a histone-lysine N-methyltransferase enzyme encoded by the ASH1L gene located at chromosomal band 1q22. ASH1L is the human homolog of Drosophila Ash1.

<span class="mw-page-title-main">Ming-Ming Zhou</span>

Ming-Ming Zhou is an American scientist who focuses on structural and chemical biology, NMR spectroscopy, and drug design. He is the Dr. Harold and Golden Lamport Professor and Chairman of the Department of Pharmacological Sciences. He is also the co-director of the Drug Discovery Institute at the Icahn School of Medicine at Mount Sinai and Mount Sinai Health System in New York City, as well as Professor of Sciences. Zhou is an elected fellow of the American Association for the Advancement of Science.

Epigenetics of human development is the study of how epigenetics effects human development.

H3K27ac is an epigenetic modification to the DNA packaging protein histone H3. It is a mark that indicates acetylation of the lysine residue at N-terminal position 27 of the histone H3 protein.

H2BK5ac is an epigenetic modification to the DNA packaging protein Histone H2B. It is a mark that indicates the acetylation at the 5th lysine residue of the histone H2B protein. H2BK5ac is involved in maintaining stem cells and colon cancer.

H4K16ac is an epigenetic modification to the DNA packaging protein Histone H4. It is a mark that indicates the acetylation at the 16th lysine residue of the histone H4 protein.

H4K91ac is an epigenetic modification to the DNA packaging protein histone H4. It is a mark that indicates the acetylation at the 91st lysine residue of the histone H4 protein. No known diseases are attributed to this mark but it might be implicated in melanoma.

References

  1. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  2. 1 2 3 4 Yang XJ (2015). "MOZ and MORF acetyltransferases: Molecular interaction, animal development and human disease". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1853 (8): 1818–26. doi: 10.1016/j.bbamcr.2015.04.014 . PMID   25920810.
  3. 1 2 3 4 5 You L, Chen L, Penney J, Miao D, Yang XJ (2014). "Expression atlas of the multivalent epigenetic regulator Brpf1 and its requirement for survival of mouse embryos". Epigenetics. 9 (6): 860–72. doi:10.4161/epi.28530. PMC   4065184 . PMID   24646517.
  4. 1 2 3 4 You L, Yan K, Zou J, Zhao H, Bertos NR, Park M, Wang E, Yang XJ (2015). "The chromatin regulator Brpf1 regulates embryo development and cell proliferation". The Journal of Biological Chemistry. 290 (18): 11349–64. doi: 10.1074/jbc.M115.643189 . PMC   4416840 . PMID   25773539.
  5. 1 2 3 You L, Yan K, Zou J, Zhou J, Zhao H, Bertos NR, Park M, Wang E, Yang XJ (2015). "The lysine acetyltransferase activator Brpf1 governs dentate gyrus development through neural stem cells and progenitors". PLOS Genetics. 11 (3): e1005034. doi:10.1371/journal.pgen.1005034. PMC   4355587 . PMID   25757017.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  6. Laue K, Daujat S, Crump JG, Plaster N, Roehl HH, Kimmel CB, Schneider R, Hammerschmidt M (2008). "The multidomain protein Brpf1 binds histones and is required for Hox gene expression and segmental identity". Development. 135 (11): 1935–46. doi:10.1242/dev.017160. PMC   2919486 . PMID   18469222.
  7. Hibiya K, Katsumoto T, Kondo T, Kitabayashi I, Kudo A (2009). "Brpf1, a subunit of the MOZ histone acetyl transferase complex, maintains expression of anterior and posterior Hox genes for proper patterning of craniofacial and caudal skeletons". Developmental Biology. 329 (2): 176–90. doi:10.1016/j.ydbio.2009.02.021. PMID   19254709.
  8. Yan K, You L, Degerny C, Ghorbani M, Liu X, Chen L, Li L, Miao D, Yang XJ (2016). "The Chromatin Regulator BRPF3 Preferentially Activates the HBO1 Acetyltransferase but Is Dispensable for Mouse Development and Survival". The Journal of Biological Chemistry. 291 (6): 2647–63. doi: 10.1074/jbc.M115.703041 . PMC   4742735 . PMID   26677226.
  9. 1 2 Kool M, Jones DT, Jäger N, Northcott PA, Pugh TJ, Hovestadt V, et al. (2014). "Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition". Cancer Cell. 25 (3): 393–405. doi:10.1016/j.ccr.2014.02.004. PMC   4493053 . PMID   24651015.
  10. 1 2 Huether R, Dong L, Chen X, Wu G, Parker M, Wei L, et al. (2014). "The landscape of somatic mutations in epigenetic regulators across 1,000 paediatric cancer genomes". Nature Communications. 5: 3630. Bibcode:2014NatCo...5.3630H. doi:10.1038/ncomms4630. PMC   4119022 . PMID   24710217.
  11. 1 2 Shima H, Yamagata K, Aikawa Y, Shino M, Koseki H, Shimada H, Kitabayashi I (2014). "Bromodomain-PHD finger protein 1 is critical for leukemogenesis associated with MOZ-TIF2 fusion". International Journal of Hematology. 99 (1): 21–31. doi:10.1007/s12185-013-1466-x. PMID   24258712. S2CID   207400403.

Further reading