C14orf102

Last updated
NRDE2
Identifiers
Aliases NRDE2 , C14orf102, NRDE-2, necessary for RNA interference, domain containing
External IDs MGI: 2670969 HomoloGene: 41213 GeneCards: NRDE2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_017970
NM_199043

NM_001290303
NM_183155
NM_001377383

RefSeq (protein)

NP_060440

NP_001277232
NP_898978
NP_001364312

Location (UCSC) Chr 14: 90.27 – 90.33 Mb Chr 12: 100.09 – 100.13 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Chromosome 14 open reading frame 102 (accession: AK294958; alias: C14orf102, FLJ14051, FLJ10008, FLJ52106) [5] is a 3810bp protein-encoding gene that is highly conserved among its non-distant orthologs. It contains 20 introns and 8 different RNAs - 7 splice variants and 1 unspliced form - and is located on the reverse strand of chromosome 14 (14q32.11). [6] The protein encoded by this gene (accession: BAG58032) belongs to the UPF0614 family of Up-frameshift proteins and has a molecular weight of 132.417 kDa and isoelectric point of 7.88. It is expected to have a protein binding function and localization in the cytoplasm. [7]

Contents

Expression

According to EST profiles, C14orf102 is most highly expressed in the esophagus (98 TPM) and trachea (76), and is further expressed in multiple different tissues. [8] However, the AceView summary suggests that this gene is expressed most highly in the brain, followed by decreased expression in 81 separate tissues. This is inferred in the reconstruction of the mRNA sequence, as well as exon sequencing, in that the majority of cDNA clones used for each procedure were found in the brain. This is consistent with GenBank record, which indicates that the cDNA clone was also isolated from brain tissue. The general expression of the gene is high, being 1.8 times that of average gene expression.

Protein

The protein contains five HAT (histone acetyltransferase) domains, a coiled coil domain, a domain of unknown function, a lysine-rich region, and a poly-lysine and serine region. Further post-translational modifications include phosphorylation and mono-methylation sites. [9] Because the protein is considered to be a part of a family of Up-frameshift proteins, it is expected to function in protein binding and to be located in the cytoplasm. Certain UPF proteins have been found to play a central role in the nonsense-mediated mRNA decay (NMD) pathway, which is responsible for identifying and degrading mRNA sequences that contain premature termination codons (PTCs) – sequences that encode truncated amino acid sequences. [10]

Interaction

C14orf102 interacts with RNPS1, a gene encoding a protein that is known to be directly involved in nuclear export and surveillance of mRNA. [6] Surveillance by the RNPS1 protein initiates NMD after identification of exported, PTC-containing mRNA. Because UPF0614 is expected to be located in the cytoplasm and function in protein binding, this interaction supports the potential role of UPF0614 in the NMD pathway.

Related Research Articles

<span class="mw-page-title-main">UPF1</span> Protein-coding gene in the species Homo sapiens

Regulator of nonsense transcripts 1 is a protein that in humans is encoded by the UPF1 gene.

<span class="mw-page-title-main">UPF2</span> Protein-coding gene in the species Homo sapiens

Regulator of nonsense transcripts 2 is a protein that in humans is encoded by the UPF2 gene.

<span class="mw-page-title-main">HNRNPL</span> Protein-coding gene in the species Homo sapiens

Heterogeneous nuclear ribonucleoprotein L is a protein that in humans is encoded by the HNRNPL gene.

<span class="mw-page-title-main">UPF3B</span> Protein-coding gene in the species Homo sapiens

Regulator of nonsense transcripts 3B is a protein that in humans is encoded by the UPF3B gene.

<span class="mw-page-title-main">UPF3A</span> Protein-coding gene in the species Homo sapiens

Regulator of nonsense transcripts 3A is a protein that in humans is encoded by the UPF3A gene.

<span class="mw-page-title-main">SMG6</span>

Telomerase-binding protein EST1A is an enzyme that in humans is encoded by the SMG6 gene on chromosome 17. It is ubiquitously expressed in many tissues and cell types. The C-terminus of the EST1A protein contains a PilT N-terminus (PIN) domain. This structure for this domain has been determined by X-ray crystallography. SMG6 functions to bind single-stranded DNA in telomere maintenance and single-stranded RNA in nonsense-mediated mRNA decay (NMD). The SMG6 gene also contains one of 27 SNPs associated with increased risk of coronary artery disease.

<span class="mw-page-title-main">C11orf49</span> Protein-coding gene in the species Homo sapiens

C11orf49 is a protein coding gene that in humans encodes for the C11orf49 protein. It is heavily expressed in brain tissue and peripheral blood mononuclear cells, with the latter being an important component of the immune system. It is predicted that the C11orf49 protein acts as a kinase, and has been shown to interact with HTT and APOE2.

mRNA surveillance mechanisms are pathways utilized by organisms to ensure fidelity and quality of messenger RNA (mRNA) molecules. There are a number of surveillance mechanisms present within cells. These mechanisms function at various steps of the mRNA biogenesis pathway to detect and degrade transcripts that have not properly been processed.

<span class="mw-page-title-main">Exon junction complex</span> Protein complex assembled on mRNA

An exon junction complex (EJC) is a protein complex which forms on a pre-messenger RNA strand at the junction of two exons which have been joined together during RNA splicing. The EJC has major influences on translation, surveillance and localization of the spliced mRNA. It is first deposited onto mRNA during splicing and is then transported into the cytoplasm. There it plays a major role in post-transcriptional regulation of mRNA. It is believed that exon junction complexes provide a position-specific memory of the splicing event. The EJC consists of a stable heterotetramer core, which serves as a binding platform for other factors necessary for the mRNA pathway. The core of the EJC contains the protein eukaryotic initiation factor 4A-III bound to an adenosine triphosphate (ATP) analog, as well as the additional proteins Magoh and Y14. The binding of these proteins to nuclear speckled domains has been measured recently and it may be regulated by PI3K/AKT/mTOR signaling pathways. In order for the binding of the complex to the mRNA to occur, the eIF4AIII factor is inhibited, stopping the hydrolysis of ATP. This recognizes EJC as an ATP dependent complex. EJC also interacts with a large number of additional proteins; most notably SR proteins. These interactions are suggested to be important for mRNA compaction. The role of EJC in mRNA export is controversial.

<span class="mw-page-title-main">HIKESHI</span>

HIKESHI is a protein important in lung and multicellular organismal development that, in humans, is encoded by the HIKESHI gene. HIKESHI is found on chromosome 11 in humans and chromosome 7 in mice. Similar sequences (orthologs) are found in most animal and fungal species. The mouse homolog, lethal gene on chromosome 7 Rinchik 6 protein is encoded by the l7Rn6 gene.

<span class="mw-page-title-main">CZIB</span> Protein-coding gene in the species Homo sapiens

CZIB is a gene in the human genome that encodes the protein CXXC motif containing zinc binding protein. CZIB was previously referred to as C1orf123.

<span class="mw-page-title-main">CFAP206</span>

Cilia And Flagella Associated Protein 206 (CFAP206) is a gene that in humans encodes a protein “DUF3508”. This protein has a function that is not currently very well understood. Other known aliases are “dJ382I10.1, UPF0704 Protein C6orf165.” In humans, the gene coding sequence is 56,501 base pairs long, with an mRNA of 2,215 base pairs, and a protein sequence of 622 amino acids. The C6orf165 gene is conserved in chimpanzee, rhesus monkey, dog, cow, mouse, rat, chicken, zebrafish, mosquito, frog, and more C6orf165 is rarely expressed in humans, with relatively high expression in brain, lungs (trachea) and testis. The molecular weight of UPF0704 is 71,193 Da and the PI is 6.38

<span class="mw-page-title-main">C7orf25</span> Human protein-coding gene

C7orf25 protein UPF0415 (UPF0415) is a protein encoded on chromosome 7, in open reading frame 25 (C7orf25) and are located at domain of unknown function 1308. C7orf25 is located at the minus strand and encodes 12 proteins, one of them being UPF0415. This protein is believed to be active in the proteosome pathway. C7orf25 protein UPF0415 is not a transmembrane protein and has no signal peptide. UPF0415 has two isoforms, Q9BPX7-1 and Q9BPX7-2. Both consists of two exons that are both highly conserved among vertebrates.

<span class="mw-page-title-main">UPF0488</span>

UPF0488 is a protein that in humans is encoded by the C8orf33 gene. Chromosome 8 open reading frame 33 (C8orf33) is a human protein-coding gene of currently unknown function.

<span class="mw-page-title-main">C1orf94</span> Protein-coding gene in the species Homo sapiens

Chromosome 1 Opening Reading Frame 94 or C1orf94 is a protein in human coded by the C1orf94 gene. The function of this protein is still poorly understood.

<span class="mw-page-title-main">C6orf136</span>

C6orf136 is a protein in humans encoded by the C6orf136 gene. The gene is conserved in mammals, mollusks, as well some porifera. While the function of the gene is currently unknown, C6orf136 has been shown to be hypermethylated in response to FOXM1 expression in Head Neck Squamous Cell Carcinoma (HNSCC) tissue cells. Additionally, elevated expression of C6orf136 has been associated with improved survival rates in patients with bladder cancer. C6orf136 has three known isoforms.

<span class="mw-page-title-main">C5orf24</span> Protein-coding gene in the species Homo sapiens

C5orf24 is a protein encoded by the C5orf24 gene (5q31.1) in humans. C5orf24 is primarily localized to the nucleus and is highly conserved with orthologs in mammals, birds, reptiles, amphibians, and fish.

<span class="mw-page-title-main">C12orf50</span> Protein encoding gene C12orf50

Chromosome 12 Open Reading Frame 50 (C12orf50) is a protein-encoding gene which in humans encodes for the C12orf50 protein. The accession id for this gene is NM_152589. The location of C12orf50 is 12q21.32. It covers 55.42 kb, from 88429231 to 88373811, on the reverse strand. Some of the neighboring genes to C12orf50 are RPS4XP15, LOC107984542, and C12orf29. RPS4XP15 is upstream C12orf50 and is on the same strand. LOC107984542 and C12orf29 are both downstream. LOC107984542 is on the opposite strand while C12orf29 is on the same strand. C12orf50 has six isoforms. This page is focusing on isoform X1. C12orf50 isoform X1 is 1711 nucleotides long and has a protein with a length of 414 aa.

<span class="mw-page-title-main">C5orf22</span> Protein-coding gene in the species Homo sapiens

Chromosome 5 open reading frame 22 (c5orf22) is a protein-coding gene of poorly characterized function in Homo sapiens. The primary alias is unknown protein family 0489 (UPF0489).

<span class="mw-page-title-main">CCDC184</span> CCDC184 Bioinformatics analysis

Coiled-coil domain-containing 184 (CCDC184) is a protein which, in humans, is encoded by the CCDC184 gene

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000119720 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000021179 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. C14orf102 Gene - GeneCards | CN102 Protein | CN102 Antibody
  6. 1 2 AceView: Gene:C14orf102, a comprehensive annotation of human, mouse and worm genes with mRNAs or ESTsAceView
  7. C14orf102 (human)
  8. EST Profile - Hs.528131
  9. UPF0614 protein C14orf102 - Homo sapiens (Human)
  10. "Archived copy" (PDF). Archived from the original (PDF) on 2010-06-24. Retrieved 2011-05-10.{{cite web}}: CS1 maint: archived copy as title (link)