C1orf185

Last updated
C1orf185
Identifiers
Aliases C1orf185 , chromosome 1 open reading frame 185
External IDs MGI: 1914896; HomoloGene: 49856; GeneCards: C1orf185; OMA:C1orf185 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001136508

NM_001199090
NM_026291

RefSeq (protein)

NP_001129980

NP_001186019
NP_080567

Location (UCSC) Chr 1: 51.1 – 51.15 Mb Chr 4: 109.36 – 109.39 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Chromosome 1 open reading frame 185, also known as C1orf185, is a protein that in humans is encoded by the C1orf185 gene. In humans, C1orf185 is a lowly expressed protein that has been found to be occasionally expressed in the circulatory system. [5] [6]

Contents

Gene

C1orf185 is located on chromosome 1 in humans on the positive strand between bases 51,102,221 and 51,148,086. [7] There are 5 exons in the main splice isoform, however the number and selection of exons varies based on the isoform [7]

C1orf185 locus within the human genome. Diagrams from NCBI Genome Viewer (top) and the Integrative Genomics Viewer (bottom). Locus c1orf185.png
C1orf185 locus within the human genome. Diagrams from NCBI Genome Viewer (top) and the Integrative Genomics Viewer (bottom).

mRNA and Protein Isoforms

C1orf185 has 5 different splice isoforms in humans. [7]

C1orf185 Transcripts
IsoformmRNA AccessionProtein AccessionTranscript Length (bp)Protein Length (AA)
uncharacterized protein C1orf185 NM_001136508.2 NP_001129980.1 921199
uncharacterized protein C1orf185 isoform X1 XM_011541282.2 XP_011539584.1  787195
uncharacterized protein C1orf185 isoform X2 XM_024446525.1 XP_024302293.1 586116
uncharacterized protein C1orf185 isoform X3 XM_024446528.1 XP_024302296.1 420116
uncharacterized protein C1orf185 isoform X4 XM_024446529.1 XP_024302297.1 367107

Protein

C1orf185 is a member of the pfam15842 protein family, containing a domain of unknown function, DUF4718. [10] This family of proteins is between 130 and 224 amino acids long, and is found only in eukaryotes..

The main splice isoform of C1orf185 has a molecular weight of 22.4 kDa [11] and an isoelectric point of 7.67. [12] It contains a transmembrane domain spanning from positions 15 to 37. [7] There is also a conserved serine-rich region from S123 to S142, which could possibly indicate function as a "splicing activator". [13]

C1orf185 contains 3 primary subcellular domains: an extracellular domain which spans the amino acids from positions 1 to 14, a transmembrane domain from positions 15–37, and a large intracellular domain from positions 38–199. [14]

Below are predicted secondary and tertiary structures of C1orf185, modeled using the Chou-Fasman [15] secondary structure prediction tool and the I-TASSER [16] protein structure and function prediction tool. Chou-Fasman predicts a mixture of α-helices, β-sheets, and other structural turns and coils, which can be seen modeled on the I-TASSER prediction.

Chou-Fasman Secondary Structure Prediction (left) and I-TASSER Tertiary Structure Prediction (right) for C1orf185. C1orf185 itasser cffsp.png
Chou-Fasman Secondary Structure Prediction (left) and I-TASSER Tertiary Structure Prediction (right) for C1orf185.

Regulation of Expression

Gene Level Regulation

Below is a diagram showing the locations of predicted transcription factor binding sites in the C1orf185 promoter, along with a table describing the attributes of each individual binding site. The transcription factors were found and analyzed using the ElDorado tool from Genomatix. [17]

Diagram of the C1orf185 with transcription factor binding sites annotated. Promoter anno.png
Diagram of the C1orf185 with transcription factor binding sites annotated.


Transcription Factor Binding Sites within the C1orf185 Promoter
Transcription FactorDetailed matrix infoMatrix similaritySequence+/-
VTATA.02Mammalian C-type LTR TATA box0.91tgtcaTAAAaacattcc+
NKX25.05Homeodomain factor Nkx-2.5/Csx0.986tttttTGAGtgaagtcttg-
CDX1.01Intestine specific homeodomain factor CDX-10.988ttgccctTTTAtgaaaaaa+
VTATA.02Mammalian C-type LTR TATA box0.914tacttTAAAaataagca-
ERG.02v-ets erythroblastosis virus E26 oncogene homolog0.942gtctcaaaGGAAaataaaaag-
SPI1.02SPI-1 proto-oncogene; hematopoietic transcription factor PU.10.992attaaagaGGAAgtctcaaag-
FHXB.01Fork head homologous X binds DNA with a dual sequence specificity (FHXA and FHXB)0.831ttctaaATAAcacattt-
TGIF.01TG-interacting factor belonging to TALE class of homeodomain factors1tctataaatGTCAatta+
ZNF219.01Kruppel-like zinc finger protein 2190.913ctccaCCCCcgtcagcccaaagg+
ZBP89.01Zinc finger transcription factor ZBP-890.956catctccaCCCCcgtcagcccaa+
CREB.02cAMP-responsive element binding protein0.922cctttgggcTGACgggggtgg-
FOXP1_ES.01Alternative splicing variant of FOXP1, activated in ESCs1tcataaaAACAttccag-
VTATA.02Mammalian C-type LTR TATA box0.895tgtcaTAAAaacattcc-
CREB1.02cAMP-responsive element binding protein 10.949tggaaGTGAtgtcataaaaac-
SPI1.02SPI-1 proto-oncogene; hematopoietic transcription factor PU.10.979atttgagtGGAAgtgatgtca-
NKX25.05Homeodomain factor Nkx-2.5/Csx0.994gaattTGAGtggaagtgat-
MESP1_2.01Mesoderm posterior 1 and 20.917cagtCATAtggct+
MESP1_2.01Mesoderm posterior 1 and 20.929aagcCATAtgact-
DELTAEF1.01deltaEF10.99gcttcACCTaaag+
ERG.02v-ets erythroblastosis virus E26 oncogene homolog0.93gaagaagaGGAAaatatattt+

Matrix similarity correlates to the confidence in the prediction for each individual binding sites. +/- correlates to presence on either the positive or negative strand. The transcription factors are listed in order of appearance from beginning to end of the promoter.

C1orf185 has a very low expression pattern, with the only site in the body showing any signs of expression being the circulatory system. Two NCBI GEO profiles have shown that C1orf185 was consistently overexpressed in whole blood samples within a group of postmenopausal women, [18] as well as being somewhat overexpressed in the peripheral blood of Parkinson's patients compared to controls. [19]

Transcript Level Regulation

Below is a figure produced by mfold [20] showing predicted mRNA structure of the 3' UTR of C1orf185.

Possible mRNA secondary structure of C1orf185 made by mfold. There are 3 main branches that end in 1-2 stem loops each. The stem loop near the end of the sequence contains the Poly-A signal, which signals the end of transcription. Mfold.png
Possible mRNA secondary structure of C1orf185 made by mfold. There are 3 main branches that end in 1-2 stem loops each. The stem loop near the end of the sequence contains the Poly-A signal, which signals the end of transcription.

C1orf185 has one conserved miRNA binding site of type 7mer-A1 among several orthologs. [21] The presence of a 7mer-A1 binding site indicates that C1orf185 is likely to be post-transcriptionally repressed. [22]

Possible conserved C1orf185 miRNA binding site details found using TargetScan. MiRNA c1orf185.png
Possible conserved C1orf185 miRNA binding site details found using TargetScan.

Protein Level Regulation

Below is a figure and table showing predicted post-translational modification sites for C1orf185.

Sequence showing predicted post-translational modifications on the C1orf185 protein. C1orf185 p t m.png
Sequence showing predicted post-translational modifications on the C1orf185 protein.
Table of Post-Translational Modifications for C1orf185
Type of ModificationToolPositions in Homo sapiens
PhosphorylationNetPhos [23] S61, S69, S104, S130, S142, S147, S165, S186
GlycationNetGlycate, [24] NetNGlyc [25] K5, K50, K98, K113
O-GlcNAcYinOYang [26] T121, S122, S130

The presence of multiple leucine glycation sites indicate that there may be ways to deter the function of the protein, as glycation has been associated with the loss of protein function in blood vessels [27]

Clinical Significance

C1orf185 has been shown to play a role in the circulatory system, likely in a more reactive role, as it is lowly expressed across many species. It appears in studies surrounding atrial fibrillation [6] and abnormal QRS duration, [5] which implies it may play a role in those circulatory diseases.

Homology

Below is a table showing C1orf185 orthologs across a variety of conserved species. Orthologs were found using NCBI BLAST, [28] the dates of divergence were found using TimeTree, [29] and the global sequence identities and similarities were found using the Clustal Omega multiple sequence alignment tool. [30]


Ortholog Table for C1orf185.
Genus and SpeciesCommon NameTaxonomic GroupDate of Divergence (MYA)Accession NumberSequence Length (aa)Sequence Identity (Global)Sequence Similarity (Global)
Homo sapiensHumanPrimates0 NP_001129980.1 199100%100%
Pongo abeliiSumatran orangutanPrimates15.76 PNJ53823.1 19593.50%95.50%
Cebus capucinus imitatorCapuchinPrimates43.2 XP_017404303.1 22977.00%79.60%
Galeopterus variegatusSunda flying lemurDermoptera76 XP_008578352.1 20373.70%77.90%
Oryctolagus cuniculusRabbitLagomorpha90 XP_008263491.1 22569.90%76.40%
Dipodomys ordiiOrd's kangaroo ratRodentia90 XP_012877642.1 18852.20%59.40%
Mastomys couchaSouthern multimammate mouseRodentia90 XP_031234037 26351.50%61.50%
Mus musculusHouse mouseRodentia90 NP_001186019.1 22647.40%59.50%
Peromyscus leucopusWhite-footed mouseRodentia90 XP_028745885.1 29541%48.20%
Phyllostomus discolorPale spear-nosed batChiroptera96 XP_028367083.1 19173.40%80.40%
Myotis davidiiDavid's myotisChiroptera96 XP_006768446.1 19671.40%78.40%
Equus caballusHorsePerissodactyla96 XP_023485921.1 24363.80%68.30%
Muntiacus muntjakIndian muntjacArtiodactyla96 KAB0362285.1 20059.40%65.90%
Hipposideros armigerGreat roundleaf batChiroptera96 XP_019487867.1 15754.90%59.20%
Tursiops truncatusBottlenose dolphinArtiodactyla96 XP_033708766.1 18954.10%59.00%
Sarcophilus harrisiiTasmanian devilDasyuromorhpia159 XP_031825005.1 33318.20%27.70%
Ornithorhynchus anatinusPlatypusMonotremata180 XP_028902271 30926.80%37.40%
Pelodiscus sinensisChinese softshell turtleReptilia312 XP_025042106.1 8907.40%11.40%
Gopherus evgoodeiSinaloan thornscrub tortoiseReptilia312 XP_030429802.1 7774.00%6.30%
Chrysemys picta belliiWestern painted turtleReptilia312 XP_023960730.1 7483.70%5.80%

Compared to other genes, C1orf185 appears to be evolving and changing relatively quickly, as it is only conserved in mammals and a few turtles, and more distant mammals have quite distant similarities. Primates are the only taxonomic group that heavily conserves this gene with regards to the human sequence, while other mammals and turtles only heavily conserve the transmembrane domain (positions 15–37). As primates and mammals are warm-blooded, this may further support the evidence showing a possible role in the circulatory system.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000204006 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000060491 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 Sotoodehnia N, Isaacs A, de Bakker PI, Dörr M, Newton-Cheh C, Nolte IM, et al. (December 2010). "Common variants in 22 loci are associated with QRS duration and cardiac ventricular conduction". Nature Genetics. 42 (12): 1068–76. doi:10.1038/ng.716. PMC   3338195 . PMID   21076409.
  6. 1 2 Roselli C, Chaffin MD, Weng LC, Aeschbacher S, Ahlberg G, Albert CM, et al. (June 2018). "Multi-ethnic genome-wide association study for atrial fibrillation". Nature Genetics. 50 (9): 1225–1233. doi:10.1038/s41588-018-0133-9. PMC   6136836 . PMID   29892015.
  7. 1 2 3 4 "C1orf185 chromosome 1 open reading frame 185 [Homo sapiens (human)] - Gene - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2020-05-01.
  8. "Genome Data Viewer". www.ncbi.nlm.nih.gov. Retrieved 2020-05-01.
  9. "Home | Integrative Genomics Viewer". software.broadinstitute.org. Retrieved 2020-05-01.
  10. "CDD Conserved Protein Domain Family: DUF4718". www.ncbi.nlm.nih.gov. Retrieved 2020-05-01.
  11. "SAPS < Sequence Statistics < EMBL-EBI". www.ebi.ac.uk. Retrieved 2020-05-01.
  12. "ExPASy - Compute pI/Mw tool". web.expasy.org. Retrieved 2020-05-01.
  13. Graveley BR, Maniatis T (April 1998). "Arginine/serine-rich domains of SR proteins can function as activators of pre-mRNA splicing". Molecular Cell. 1 (5): 765–71. doi: 10.1016/s1097-2765(00)80076-3 . PMID   9660960.
  14. "TMHMM Server, v. 2.0". www.cbs.dtu.dk. Retrieved 2020-05-01.
  15. 1 2 "CFSSP: Chou & Fasman Secondary Structure Prediction Server". www.biogem.org. Retrieved 2020-05-01.
  16. 1 2 "I-TASSER server for protein structure and function prediction". zhanglab.ccmb.med.umich.edu. Retrieved 2020-05-01.
  17. "Genomatix - NGS Data Analysis & Personalized Medicine". www.genomatix.de. Retrieved 2020-05-01.
  18. "13889230 - GEO Profiles - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2020-05-01.
  19. "129780050 - GEO Profiles - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2020-05-01.
  20. 1 2 "The Mfold Web Server | mfold.rit.albany.edu". unafold.rna.albany.edu. Retrieved 2020-05-01.
  21. 1 2 "TargetScanHuman 7.2". www.targetscan.org. Retrieved 2020-05-01.
  22. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (July 2007). "MicroRNA targeting specificity in mammals: determinants beyond seed pairing". Molecular Cell. 27 (1): 91–105. doi:10.1016/j.molcel.2007.06.017. PMC   3800283 . PMID   17612493.
  23. "NetPhos 3.1 Server". www.cbs.dtu.dk. Retrieved 2020-05-01.
  24. "NetGlycate 1.0 Server". www.cbs.dtu.dk. Retrieved 2020-05-01.
  25. "NetNGlyc 1.0 Server". www.cbs.dtu.dk. Retrieved 2020-05-01.
  26. "YinOYang 1.2 Server". www.cbs.dtu.dk. Retrieved 2020-05-01.
  27. Kim CS, Park S, Kim J (September 2017). "The role of glycation in the pathogenesis of aging and its prevention through herbal products and physical exercise". Journal of Exercise Nutrition & Biochemistry. 21 (3): 55–61. doi:10.20463/jenb.2017.0027. PMC   5643203 . PMID   29036767.
  28. "BLAST: Basic Local Alignment Search Tool". blast.ncbi.nlm.nih.gov. Retrieved 2020-05-01.
  29. "TimeTree :: The Timescale of Life". www.timetree.org. Retrieved 2020-05-01.
  30. "Clustal Omega < Multiple Sequence Alignment < EMBL-EBI". www.ebi.ac.uk. Retrieved 2020-05-01.