CSF glucose

Last updated
CSF glucose
Reference range 2.5–4.4 mmol/L (45-80mg/dL)
LOINC 2342-4 (MCnc), 14744-7 (SCnc)

CSF glucose or glycorrhachia is a measurement used to determine the concentration of glucose in cerebrospinal fluid (CSF). [1] [2] [3]

Contents

Normal values in humans

Pathophysiology sample values
BMP/ELECTROLYTES:
Na+ = 140 Cl = 100 BUN = 20 /
Glu = 150
\
K+ = 4 CO2 = 22 PCr = 1.0
ARTERIAL BLOOD GAS:
HCO3 = 24 p a CO2 = 40 p a O2 = 95 pH = 7.40
ALVEOLAR GAS:
p A CO2 = 36 p A O2 = 105 A-a g = 10
OTHER:
Ca = 9.5 Mg2+ = 2.0 PO4 = 1
CK = 55 BE = −0.36 AG = 16
SERUM OSMOLARITY/RENAL:
PMO = 300 PCO = 295 POG = 5 BUN:Cr = 20
URINALYSIS:
UNa+ = 80 UCl = 100 UAG = 5 FENa = 0.95
UK+ = 25 USG = 1.01 UCr = 60 UO = 800
PROTEIN/GI/LIVER FUNCTION TESTS:
LDH = 100 TP = 7.6 AST = 25 TBIL = 0.7
ALP = 71 Alb = 4.0 ALT = 40 BC = 0.5
AST/ALT = 0.6 BU = 0.2
AF alb = 3.0 SAAG = 1.0 SOG = 60
CSF:
CSF alb = 30 CSF glu = 60 CSF/S alb = 7.5 CSF/S glu = 0.6

The glucose level in CSF is proportional to the blood glucose level and corresponds to 60-70% of the concentration in blood. [4] Therefore, normal CSF glucose levels lie between 2.5 and 4.4 mmol/L (45–80 mg/dL). [5]

Abnormalities in CSF glucose concentration

Low CSF glucose levels

Hypoglycorrhachia (low CSF glucose levels) can be caused by CNS infections, inflammatory conditions, subarachnoid hemorrhage, hypoglycemia (low blood sugar), [3] impaired glucose transport, increased CNS glycolytic activity and metastatic carcinoma. [4]

CSF glucose levels can be useful in distinguishing among causes of meningitis as more than 50% of patients with bacterial meningitis have decreased CSF glucose levels while patients with viral meningitis usually have normal CSF glucose levels. Decrease in glucose levels during a CNS infection is caused due to glycolysis by both white cells and the pathogen, and impaired CSF glucose transport through the blood-brain barrier. [3] [6]

High CSF glucose levels

There is no pathologic process that directly leads to hyperglycorrhachia (high CSF glucose levels) and therefore, high CSF glucose levels have no specific diagnostic importance. [3]

However, elevated blood sugar levels (hyperglycemia) result in elevated CSF glucose levels [3] as the CSF glucose level is proportional to the blood glucose level with glucose being actively transported as well as simply diffusing down the concentration gradient from blood to CSF. In addition, damage to small blood vessels during lumbar puncture (traumatic tap) can lead to an increased CSF glucose since the blood that enters the collected CSF sample contains higher levels of glucose. [4]

CSF glucose levels do not generally exceed 16.7 mmol/L (300 mg/dL). [3]

See also

Related Research Articles

<span class="mw-page-title-main">Cerebrospinal fluid</span> Clear, colorless bodily fluid found in the brain and spinal cord

Cerebrospinal fluid (CSF) is a clear, colorless body fluid found within the tissue that surrounds the brain and spinal cord of all vertebrates.

<span class="mw-page-title-main">Hypoglycemia</span> Health condition

Hypoglycemia, also called low blood sugar, is a fall in blood sugar to levels below normal, typically below 70 mg/dL (3.9 mmol/L). Whipple's triad is used to properly identify hypoglycemic episodes. It is defined as blood glucose below 70 mg/dL (3.9 mmol/L), symptoms associated with hypoglycemia, and resolution of symptoms when blood sugar returns to normal. Hypoglycemia may result in headache, tiredness, clumsiness, trouble talking, confusion, fast heart rate, sweating, shakiness, nervousness, hunger, loss of consciousness, seizures, or death. Symptoms typically come on quickly.

<span class="mw-page-title-main">Diabetic ketoacidosis</span> Medical condition

Diabetic ketoacidosis (DKA) is a potentially life-threatening complication of diabetes mellitus. Signs and symptoms may include vomiting, abdominal pain, deep gasping breathing, increased urination, weakness, confusion and occasionally loss of consciousness. A person's breath may develop a specific "fruity" smell. Onset of symptoms is usually rapid. People without a previous diagnosis of diabetes may develop DKA as the first obvious symptom.

<span class="mw-page-title-main">Hyperglycemia</span> Too much blood sugar, usually because of diabetes

Hyperglycemia is a condition in which an excessive amount of glucose circulates in the blood plasma. This is generally a blood sugar level higher than 11.1 mmol/L (200 mg/dL), but symptoms may not start to become noticeable until even higher values such as 13.9–16.7 mmol/L (~250–300 mg/dL). A subject with a consistent range between ~5.6 and ~7 mmol/L is considered slightly hyperglycemic, and above 7 mmol/L is generally held to have diabetes. For diabetics, glucose levels that are considered to be too hyperglycemic can vary from person to person, mainly due to the person's renal threshold of glucose and overall glucose tolerance. On average, however, chronic levels above 10–12 mmol/L (180–216 mg/dL) can produce noticeable organ damage over time.

<span class="mw-page-title-main">Viral meningitis</span> Medical condition

Viral meningitis, also known as aseptic meningitis, is a type of meningitis due to a viral infection. It results in inflammation of the meninges. Symptoms commonly include headache, fever, sensitivity to light and neck stiffness.

<span class="mw-page-title-main">Blood sugar level</span> Concentration of glucose present in the blood (Glycaemia)

Glycaemia, also known as blood sugar level, blood sugar concentration, or blood glucose level is the measure of glucose concentrated in the blood of humans and other animals. Approximately 4 grams of dissolved glucose, a simple sugar, is present in the blood plasma of a 70 kg (154 lb) human at all times. The body tightly regulates blood glucose levels as a part of metabolic homeostasis. Glucose is stored in skeletal muscle and liver cells in the form of glycogen; in fasting individuals, blood glucose is maintained at a constant level at the expense of glycogen stores in the liver and skeletal muscle.

<span class="mw-page-title-main">Lumbar puncture</span> Procedure to collect cerebrospinal fluid

Lumbar puncture (LP), also known as a spinal tap, is a medical procedure in which a needle is inserted into the spinal canal, most commonly to collect cerebrospinal fluid (CSF) for diagnostic testing. The main reason for a lumbar puncture is to help diagnose diseases of the central nervous system, including the brain and spine. Examples of these conditions include meningitis and subarachnoid hemorrhage. It may also be used therapeutically in some conditions. Increased intracranial pressure is a contraindication, due to risk of brain matter being compressed and pushed toward the spine. Sometimes, lumbar puncture cannot be performed safely. It is regarded as a safe procedure, but post-dural-puncture headache is a common side effect if a small atraumatic needle is not used.

<span class="mw-page-title-main">Hypophosphatemia</span> Medical condition

Hypophosphatemia is an electrolyte disorder in which there is a low level of phosphate in the blood. Symptoms may include weakness, trouble breathing, and loss of appetite. Complications may include seizures, coma, rhabdomyolysis, or softening of the bones.

Neuroglycopenia is a shortage of glucose (glycopenia) in the brain, usually due to hypoglycemia. Glycopenia affects the function of neurons, and alters brain function and behavior. Prolonged or recurrent neuroglycopenia can result in loss of consciousness, damage to the brain, and eventual death.

<span class="mw-page-title-main">Glycogen storage disease type I</span> Medical condition

Glycogen storage disease type I is an inherited disease that prevents the liver from properly breaking down stored glycogen, which is necessary in maintain adequate blood sugar levels. GSD I is divided into two main types, GSD Ia and GSD Ib, which differ in cause, presentation, and treatment. There are also possibly rarer subtypes, the translocases for inorganic phosphate or glucose ; however, a recent study suggests that the biochemical assays used to differentiate GSD Ic and GSD Id from GSD Ib are not reliable, and are therefore GSD Ib.

Hyperosmolar hyperglycemic state (HHS) is a complication of diabetes mellitus in which high blood sugar results in high osmolarity without significant ketoacidosis. Symptoms include signs of dehydration, weakness, leg cramps, vision problems, and an altered level of consciousness. Onset is typically over days to weeks. Complications may include seizures, disseminated intravascular coagulopathy, mesenteric artery occlusion, or rhabdomyolysis.

In medicine, the urea-to-creatinine ratio (UCR), known in the United States as BUN-to-creatinine ratio, is the ratio of the blood levels of urea (BUN) (mmol/L) and creatinine (Cr) (μmol/L). BUN only reflects the nitrogen content of urea and urea measurement reflects the whole of the molecule, urea is just over twice BUN. In the United States, both quantities are given in mg/dL The ratio may be used to determine the cause of acute kidney injury or dehydration.

<span class="mw-page-title-main">Prediabetes</span> Predisease state of hyperglycemia with high risk for diabetes

Prediabetes is a component of the metabolic syndrome and is characterized by elevated blood sugar levels that fall below the threshold to diagnose diabetes mellitus. It usually does not cause symptoms but people with prediabetes often have obesity, dyslipidemia with high triglycerides and/or low HDL cholesterol, and hypertension. It is also associated with increased risk for cardiovascular disease (CVD). Prediabetes is more accurately considered an early stage of diabetes as health complications associated with type 2 diabetes often occur before the diagnosis of diabetes.

<span class="mw-page-title-main">Leptomeningeal cancer</span> Medical condition

Leptomeningeal cancer is a rare complication of cancer in which the disease spreads from the original tumor site to the meninges surrounding the brain and spinal cord. This leads to an inflammatory response, hence the alternative names neoplastic meningitis (NM), malignant meningitis, or carcinomatous meningitis. The term leptomeningeal describes the thin meninges, the arachnoid and the pia mater, between which the cerebrospinal fluid is located. The disorder was originally reported by Eberth in 1870.

<span class="mw-page-title-main">Mollaret's meningitis</span> Medical condition

Mollaret's meningitis is a recurrent or chronic inflammation of the protective membranes covering the brain and spinal cord, known collectively as the meninges. Since Mollaret's meningitis is a recurrent, benign (non-cancerous), aseptic meningitis, it is also referred to as benign recurrent lymphocytic meningitis. It was named for Pierre Mollaret, the French neurologist who first described it in 1944.

<span class="mw-page-title-main">Meningitis</span> Inflammation of the membranes around the brain and spinal cord

Meningitis is acute or chronic inflammation of the protective membranes covering the brain and spinal cord, collectively called the meninges. The most common symptoms are fever, headache, and neck stiffness. Other symptoms include confusion or altered consciousness, nausea, vomiting, and an inability to tolerate light or loud noises. Young children often exhibit only nonspecific symptoms, such as irritability, drowsiness, or poor feeding. A non-blanching rash may also be present.

The CSF/serum glucose ratio, also known as CSF/Blood glucose ratio, is a measurement used to compare CSF glucose and blood sugar.

Neurovirology is an interdisciplinary field which represents a melding of clinical neuroscience, virology, immunology, and molecular biology. The main focus of the field is to study viruses capable of infecting the nervous system. In addition to this, the field studies the use of viruses to trace neuroanatomical pathways, for gene therapy, and to eliminate detrimental populations of neural cells.

<span class="mw-page-title-main">Lymphocytic pleocytosis</span> Increase in lymphocytes within cerebrospinal fluid

Lymphocytic pleocytosis is an abnormal increase in the amount of lymphocytes in the cerebrospinal fluid (CSF). It is usually considered to be a sign of infection or inflammation within the nervous system, and is encountered in a number of neurological diseases, such as pseudomigraine, Susac's syndrome, and encephalitis. While lymphocytes make up roughly a quarter of all white blood cells (WBC) in the body, they are generally rare in the CSF. Under normal conditions, there are usually less than 5 white blood cells per µL of CSF. In a pleocytic setting, the number of lymphocytes can jump to more than 1,000 cells per µL. Increases in lymphocyte count are often accompanied by an increase in cerebrospinal protein concentrations in addition to pleocytosis of other types of white blood cells.

<span class="mw-page-title-main">Neonatal meningitis</span> Medical condition

Neonatal meningitis is a serious medical condition in infants that is rapidly fatal if untreated. Meningitis is an inflammation of the meninges, the protective membranes of the central nervous system, is more common in the neonatal period than any other time in life, and is an important cause of morbidity and mortality globally. Mortality is roughly half in developing countries and ranges from 8%-12.5% in developed countries.

References

  1. "MedlinePlus Medical Encyclopedia: CSF glucose" . Retrieved 2009-03-04.
  2. Mohammadi M, Mohebbi MR, Naderi F (December 2003). "CSF Glucose Concentrations in Infants with Febrile Convulsions and the Possible Effect of Acetaminophen". Indian Pediatr. 40 (12): 1183–6. PMID   14722369.
  3. 1 2 3 4 5 6 Seehusen DA, Reeves MM, Fomin DA (September 2003). "Cerebrospinal fluid analysis". Am Fam Physician. 68 (6): 1103–8. PMID   14524396. Archived from the original on 2008-05-15. Retrieved 2009-03-05.
  4. 1 2 3 Lillian A. Mundt; Kristy Shanahan (2010). Graff's Textbook of Routine Urinalysis and Body Fluids. Lippincott Williams & Wilkins. p. 237. ISBN   978-1582558752.
  5. Karen Roos (2005). Principles of neurologic infectious diseases. New York: McGraw-Hill, Medical Pub. Division. p. 4. ISBN   978-0-07-140816-5.
  6. Nigrovic, MD MPH, Lise E.; Kimia MD, Amir A.; Shah MD MSCE, Samir S.; Neuman MD MPH, Mark I. (2012). "Relationship between Cerebrospinal Fluid Glucose and Serum Glucose". The New England Journal of Medicine . 366 (6): 576–8. doi:10.1056/NEJMc1111080. PMID   22316468.