In mathematics, calculus on finite weighted graphs is a discrete calculus for functions whose domain is the vertex set of a graph with a finite number of vertices and weights associated to the edges. This involves formulating discrete operators on graphs which are analogous to differential operators in calculus, such as graph Laplacians (or discrete Laplace operators) as discrete versions of the Laplacian, and using these operators to formulate differential equations, difference equations, or variational models on graphs which can be interpreted as discrete versions of partial differential equations or continuum variational models. Such equations and models are important tools to mathematically model, analyze, and process discrete information in many different research fields, e.g., image processing, machine learning, and network analysis.
In applications, finite weighted graphs represent a finite number of entities by the graph's vertices, any pairwise relationships between these entities by graph edges, and the significance of a relationship by an edge weight function. Differential equations or difference equations on such graphs can be employed to leverage the graph's structure for tasks such as image segmentation (where the vertices represent pixels and the weighted edges encode pixel similarity based on comparisons of Moore neighborhoods or larger windows), data clustering, data classification, or community detection in a social network (where the vertices represent users of the network, the edges represent links between users, and the weight function indicates the strength of interactions between users).
The main advantage of finite weighted graphs is that by not being restricted to highly regular structures such as discrete regular grids, lattice graphs, or meshes, they can be applied to represent abstract data with irregular interrelationships.
If a finite weighted graph is geometrically embedded in a Euclidean space, i.e., the graph vertices represent points of this space, then it can be interpreted as a discrete approximation of a related nonlocal operator in the continuum setting.
A finite weighted graph is defined as a triple for which
In a directed graph , each edge has a start node and an end node. In an undirected graph for every edge there exists an edge and the weight function is required to be symmetric, i.e., . On the remainder of this page, the graphs will be assumed to be undirected, unless specifically stated otherwise. Many of the ideas presented on this page can be generalized to directed graphs. [1]
The edge weight function associates to every edge a real value . For both mathematical and application specific reasons, the weight function on the edges is often required to be strictly positive and on this page it will be assumed to be so unless specifically stated otherwise. Generalizations of many of the ideas presented on this page to include negatively weighted edges are possible. Sometimes an extension of the domain of the edge weight function to is considered (with the resulting function still being called the edge weight function) by setting whenever .
In applications each graph vertex usually represents a single entity in the given data, e.g., elements of a finite data set, pixels in an image, or users in a social network. A graph edge represents a relationship between two entities, e.g. pairwise interactions or similarity based on comparisons of geometric neighborhoods (for example of pixels in images) or of another feature, with the edge weight encoding the strength of this relationship. Most commonly used weight functions are normalized to map to values between 0 and 1, i.e., .
In the following it is assumed that the considered graphs are connected without self-loops or multiple edges between vertices. These assumptions are mostly harmless as in many applications each connected component of a disconnected graph can be treated as a graph in its own right, each appearance of (which would be nonzero in the presence of self-loops) appears in the presence of another factor which disappears when (see the section on differential graph operators below), and edge weights can encode similar information as multiple edges could.
A node is a neighbor of the node if there exists an edge . In terms of notation this relationship can be abbreviated by , which should be read as " is a neighbor of ". Otherwise, if is not a neighbor of one writes . The neighborhood of a vertex is simply the set of neighbors . The degree of a vertex is the weighted size of its neighborhood:
Note that in the special case where on (i.e. the graph is unweighted ) we have .
Let be the space of (real) vertex functions. Since is a finite set, any vertex function can be represented as a -dimensional vector (where ) and hence the space of vertex functions can be identified with an -dimensional Hilbert space: . The inner product of is defined as:
Furthermore, for any vertex function the -norm and -norm of are defined as:
The -norm is induced by the inner product.
In applications vertex functions are useful to label the vertices of the nodes. For example, in graph-based data clustering, each node represents a data point and a vertex function is used to identify cluster membership of the nodes.
Analogously to real vertex functions, one can introduce the space of real edge functions. As any edge function is defined on a finite set of edges , it can be represented as a -dimensional vector , where . Hence, the space of edge functions can be identified as a -dimensional Hilbert space, i.e., .
One special case of an edge function is the normalized edge weight function introduced above in the section on basic definitions. Similar to that function, any edge function can be trivially extended to by setting if . The space of those extended edge functions is still denoted by and can be identified with , where now .
The inner product of is defined as:
Additionally, for any edge function the -norm and -norm of are defined as:
The -norm is induced by the inner product.
If one extends the edge set in a way such that than it becomes clear that because . This means that each edge function can be identified with a linear matrix operator.
An important ingredient in the calculus on finite weighted graphs is the mimicking of standard differential operators from the continuum setting in the discrete setting of finite weighted graphs. This allows one to translate well-studied tools from mathematics, such as partial differential equations and variational methods, and make them usable in applications which can best be modeled by a graph. The fundamental concept which makes this translation possible is the graph gradient, a first-order difference operator on graphs. Based on this one can derive higher-order difference operators, e.g., the graph Laplacian.
Let be a finite weighted graph and let be a vertex function. Then the weighted difference (or weighted graph derivative) of along a directed edge is
For any weighted difference the following properties hold:
Based on the notion of weighted differences one defines the weighted gradient operator on graphs as
This is a linear operator.
To measure the local variation of a vertex function in a vertex one can restrict the gradient of to all directed edges starting in and using the -norm of this edge function, i.e.,
The adjoint operator of the weighted gradient operator is a linear operator defined by
For undirected graphs with a symmetric weight function the adjoint operator of a function at a vertex has the following form:
One can then define the weighted divergence operator on graphs via the adjoint operator as . The divergence on a graph measures the net outflow of an edge function in each vertex of the graph.
The weighted graph Laplacian is a well-studied operator in the graph setting. Mimicking the relationship of the Laplace operator in the continuum setting, the weighted graph Laplacian can be derived for any vertex as:
Note that one has to assume that the graph is undirected and has a symmetric weight function for this representation.
The continuous -Laplace operator is a second-order differential operator that can be well-translated to finite weighted graphs. It allows the translation of various partial differential equations, e.g., the heat equation, to the graph setting.
Based on the first-order partial difference operators on graphs one can formally derive a family of weighted graph -Laplace operators for by minimization of the discrete -Dirichlet energy functional
The necessary optimality conditions for a minimizer of the energy functional lead to the following definition of the graph -Laplacian:
Note that the graph Laplace operator is a special case of the graph -Laplace operator for , i.e.,
Calculus on finite weighted graphs is used in a wide range of applications from different fields such as image processing, machine learning, and network analysis. A non-exhaustive list of tasks in which finite weighted graphs have been employed is:
In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).
In mathematics, Hall's marriage theorem, proved by Philip Hall, is a theorem with two equivalent formulations. In each case, the theorem gives a necessary and sufficient condition for an object to exist:
In mathematical physics, a lattice model is a mathematical model of a physical system that is defined on a lattice, as opposed to a continuum, such as the continuum of space or spacetime. Lattice models originally occurred in the context of condensed matter physics, where the atoms of a crystal automatically form a lattice. Currently, lattice models are quite popular in theoretical physics, for many reasons. Some models are exactly solvable, and thus offer insight into physics beyond what can be learned from perturbation theory. Lattice models are also ideal for study by the methods of computational physics, as the discretization of any continuum model automatically turns it into a lattice model. The exact solution to many of these models includes the presence of solitons. Techniques for solving these include the inverse scattering transform and the method of Lax pairs, the Yang–Baxter equation and quantum groups. The solution of these models has given insights into the nature of phase transitions, magnetization and scaling behaviour, as well as insights into the nature of quantum field theory. Physical lattice models frequently occur as an approximation to a continuum theory, either to give an ultraviolet cutoff to the theory to prevent divergences or to perform numerical computations. An example of a continuum theory that is widely studied by lattice models is the QCD lattice model, a discretization of quantum chromodynamics. However, digital physics considers nature fundamentally discrete at the Planck scale, which imposes upper limit to the density of information, aka Holographic principle. More generally, lattice gauge theory and lattice field theory are areas of study. Lattice models are also used to simulate the structure and dynamics of polymers.
In mathematics, the barycentric subdivision is a standard way to subdivide a given simplex into smaller ones. Its extension on simplicial complexes is a canonical method to refine them. Therefore, the barycentric subdivision is an important tool in algebraic topology.
In mathematics, the discrete Laplace operator is an analog of the continuous Laplace operator, defined so that it has meaning on a graph or a discrete grid. For the case of a finite-dimensional graph, the discrete Laplace operator is more commonly called the Laplacian matrix.
In mathematics, triangulation describes the replacement of topological spaces by piecewise linear spaces, i.e. the choice of a homeomorphism in a suitable simplicial complex. Spaces being homeomorphic to a simplicial complex are called triangulable. Triangulation has various uses in different branches of mathematics, for instance in algebraic topology, in complex analysis or in modeling.
In the mathematical field of graph theory, the Laplacian matrix, also called the graph Laplacian, admittance matrix, Kirchhoff matrix or discrete Laplacian, is a matrix representation of a graph. Named after Pierre-Simon Laplace, the graph Laplacian matrix can be viewed as a matrix form of the negative discrete Laplace operator on a graph approximating the negative continuous Laplacian obtained by the finite difference method.
In the mathematical discipline of graph theory, the edge space and vertex space of an undirected graph are vector spaces defined in terms of the edge and vertex sets, respectively. These vector spaces make it possible to use techniques of linear algebra in studying the graph.
In differential geometry, the Laplace–Beltrami operator is a generalization of the Laplace operator to functions defined on submanifolds in Euclidean space and, even more generally, on Riemannian and pseudo-Riemannian manifolds. It is named after Pierre-Simon Laplace and Eugenio Beltrami.
Geometry processing is an area of research that uses concepts from applied mathematics, computer science and engineering to design efficient algorithms for the acquisition, reconstruction, analysis, manipulation, simulation and transmission of complex 3D models. As the name implies, many of the concepts, data structures, and algorithms are directly analogous to signal processing and image processing. For example, where image smoothing might convolve an intensity signal with a blur kernel formed using the Laplace operator, geometric smoothing might be achieved by convolving a surface geometry with a blur kernel formed using the Laplace-Beltrami operator.
The Zarankiewicz problem, an unsolved problem in mathematics, asks for the largest possible number of edges in a bipartite graph that has a given number of vertices and has no complete bipartite subgraphs of a given size. It belongs to the field of extremal graph theory, a branch of combinatorics, and is named after the Polish mathematician Kazimierz Zarankiewicz, who proposed several special cases of the problem in 1951.
In mathematics and theoretical physics, an invariant differential operator is a kind of mathematical map from some objects to an object of similar type. These objects are typically functions on , functions on a manifold, vector valued functions, vector fields, or, more generally, sections of a vector bundle.
Algebraic signal processing (ASP) is an emerging area of theoretical signal processing (SP). In the algebraic theory of signal processing, a set of filters is treated as an (abstract) algebra, a set of signals is treated as a module or vector space, and convolution is treated as an algebra representation. The advantage of algebraic signal processing is its generality and portability.
The Abelian sandpile model (ASM) is the more popular name of the original Bak–Tang–Wiesenfeld model (BTW). The BTW model was the first discovered example of a dynamical system displaying self-organized criticality. It was introduced by Per Bak, Chao Tang and Kurt Wiesenfeld in a 1987 paper.
In potential theory and functional analysis, Dirichlet forms generalize the Laplacian. Dirichlet forms can be defined on any measure space, without the need for mentioning partial derivatives. This allows mathematicians to study the Laplace equation and heat equation on spaces that are not manifolds, for example, fractals. The benefit on these spaces is that one can do this without needing a gradient operator, and in particular, one can even weakly define a "Laplacian" in this manner if starting with the Dirichlet form.
In graph theory and statistics, a graphon is a symmetric measurable function , that is important in the study of dense graphs. Graphons arise both as a natural notion for the limit of a sequence of dense graphs, and as the fundamental defining objects of exchangeable random graph models. Graphons are tied to dense graphs by the following pair of observations: the random graph models defined by graphons give rise to dense graphs almost surely, and, by the regularity lemma, graphons capture the structure of arbitrary large dense graphs.
In mathematics, the infinity Laplace operator is a 2nd-order partial differential operator, commonly abbreviated . It is alternately defined, for a function of the variables , by
The theory of causal fermion systems is an approach to describe fundamental physics. It provides a unification of the weak, the strong and the electromagnetic forces with gravity at the level of classical field theory. Moreover, it gives quantum mechanics as a limiting case and has revealed close connections to quantum field theory. Therefore, it is a candidate for a unified physical theory. Instead of introducing physical objects on a preexisting spacetime manifold, the general concept is to derive spacetime as well as all the objects therein as secondary objects from the structures of an underlying causal fermion system. This concept also makes it possible to generalize notions of differential geometry to the non-smooth setting. In particular, one can describe situations when spacetime no longer has a manifold structure on the microscopic scale. As a result, the theory of causal fermion systems is a proposal for quantum geometry and an approach to quantum gravity.
In mathematics, the graph Fourier transform is a mathematical transform which eigendecomposes the Laplacian matrix of a graph into eigenvalues and eigenvectors. Analogously to the classical Fourier transform, the eigenvalues represent frequencies and eigenvectors form what is known as a graph Fourier basis.
A Stein discrepancy is a statistical divergence between two probability measures that is rooted in Stein's method. It was first formulated as a tool to assess the quality of Markov chain Monte Carlo samplers, but has since been used in diverse settings in statistics, machine learning and computer science.