Calderite

Last updated
Calderite
Calderite garnet.jpg
Calderite crystals on matrix from Sunndal Norway
General
Category Silicate mineral
Formula
(repeating unit)
(Mn2+Ca)3(Fe3+Al)2(SiO4)3
IMA symbol Cdr [1]
Strunz classification 9.AD.25 (10 ed)
8/A.08–40 (8 ed)
Dana classification 51.4.3a.6
Crystal system Cubic
Crystal class Hexoctahedral (m3m)
H-M symbol: (4/m 3 2/m)
Space group Ia3d
Unit cell a = 11.819 Å; Z = 8
Identification
Colorbrownish red to brownish yellow
Cleavage None
Mohs scale hardness6.5–7.5
Luster Vitreous
Streak white
Diaphaneity transparent to translucent
Specific gravity 3.756
Optical propertiesIsotropic
Refractive index n = 1.872
References [2] [3]

Calderite is a mineral in the garnet group with the chemical formula (Mn 2+, Ca)3(Fe 3+, Al)2(Si O 4)3.

It is dark reddish brown to dark yellowish in color and generally granular massive in form. [4]

It was named for geologist James Calder who worked on the geology of India. The name was first applied to a rock in manganese deposits in Katkamsandi, Hazaribagh district, Bihar and at Netra, Balaghat district, Madhya Pradesh, India. later transferred to its predominant mineral. [3] [4] In 1909 it was described as a mineral from Otjosondu, Otjozondjupa Region, Namibia. [2]

Related Research Articles

<span class="mw-page-title-main">Spinel</span> Mineral or gemstone

Spinel is the magnesium/aluminium member of the larger spinel group of minerals. It has the formula MgAl
2
O
4
in the cubic crystal system. Its name comes from the Latin word spinella, a diminutive form of spine, in reference to its pointed crystals.

<span class="mw-page-title-main">Hornblende</span> Complex inosilicate series of minerals

Hornblende is a complex inosilicate series of minerals. It is not a recognized mineral in its own right, but the name is used as a general or field term, to refer to a dark amphibole. Hornblende minerals are common in igneous and metamorphic rocks.

<span class="mw-page-title-main">Baryte</span> Barium sulfate mineral

Baryte, barite or barytes ( or ) is a mineral consisting of barium sulfate (BaSO4). Baryte is generally white or colorless, and is the main source of the element barium. The baryte group consists of baryte, celestine (strontium sulfate), anglesite (lead sulfate), and anhydrite (calcium sulfate). Baryte and celestine form a solid solution (Ba,Sr)SO4.

<span class="mw-page-title-main">Augite</span> Common rock-forming pyroxene mineral

Augite, also known as Augurite, is a common rock-forming pyroxene mineral with formula (Ca,Na)(Mg,Fe,Al,Ti)(Si,Al)2O6. The crystals are monoclinic and prismatic. Augite has two prominent cleavages, meeting at angles near 90 degrees.

<span class="mw-page-title-main">Galena</span> Natural mineral form of lead sulfide

Galena, also called lead glance, is the natural mineral form of lead(II) sulfide (PbS). It is the most important ore of lead and an important source of silver.

<span class="mw-page-title-main">Sylvanite</span> Silver gold telluride

Sylvanite or silver gold telluride, chemical formula (Ag,Au)Te2, is the most common telluride of gold.

<span class="mw-page-title-main">Benitoite</span> Barium titanium cyclosilicate mineral

Benitoite is a rare blue barium titanium cyclosilicate mineral, found in hydrothermally altered serpentinite. It forms in low temperature, high pressure environments typical of subduction zones at convergent plate boundaries. Benitoite fluoresces under short wave ultraviolet light, appearing bright blue to bluish white in color. The more rarely seen clear to white benitoite crystals fluoresce red under long-wave UV light.

<span class="mw-page-title-main">Chrysocolla</span> Phyllosilicate mineral

Chrysocolla ( KRIS-ə-KOL) is a hydrous copper phyllosilicate mineral and mineraloid with the formula Cu
2 – x
Al
x
(H
2
Si
2
O
5
)(OH)
4
nH
2
O
(x < 1) or (Cu, Al)
2
H
2
Si
2
O
5
(OH)
4
nH
2
O)
.

<span class="mw-page-title-main">Olivenite</span> Copper arsenate mineral

Olivenite is a copper arsenate mineral, formula Cu2AsO4OH. It crystallizes in the monoclinic system (pseudo-orthorhombic), and is sometimes found in small brilliant crystals of simple prismatic habit terminated by domal faces. More commonly, it occurs as globular aggregates of acicular crystals, these fibrous forms often having a velvety luster; sometimes it is lamellar in structure, or soft and earthy.

<span class="mw-page-title-main">Spessartine</span> Nesosilicate, manganese aluminium garnet species

Spessartine is a nesosilicate, manganese aluminium garnet species, Mn2+3Al2(SiO4)3. This mineral is sometimes mistakenly referred to as spessartite.

<span class="mw-page-title-main">Grossular</span> Garnet, nesosilicate mineral

Grossular is a calcium-aluminium species of the garnet group of minerals. It has the chemical formula of Ca3Al2(SiO4)3 but the calcium may, in part, be replaced by ferrous iron and the aluminium by ferric iron. The name grossular is derived from the botanical name for the gooseberry, grossularia, in reference to the green garnet of this composition that is found in Siberia. Other shades include cinnamon brown (cinnamon stone variety), red, and yellow. Grossular is a gemstone.

<span class="mw-page-title-main">Oldhamite</span> Rocksalt group, sulfide mineral

Oldhamite is a calcium magnesium sulfide mineral with the chemical formula (Ca,Mg)S. Ferrous iron may also be present in the mineral resulting in the chemical formula (Ca,Mg,Fe)S. It is a pale to dark brown accessory mineral in meteorites. It crystallizes in the cubic crystal system, but typically occurs as anhedral grains between other minerals.

<span class="mw-page-title-main">Bixbyite</span> Manganese-iron mixed oxide mineral

Bixbyite is a manganese iron oxide mineral with chemical formula: (Mn,Fe)2O3. The iron/manganese ratio is quite variable and many specimens have almost no iron. It is a metallic dark black with a Mohs hardness of 6.0 – 6.5. It is a somewhat rare mineral sought after by collectors as it typically forms euhedral isometric crystals exhibiting various cubes, octahedra, and dodecahedra.

<span class="mw-page-title-main">Thorianite</span>

Thorianite is a rare thorium oxide mineral, ThO2. It was originally described by Ananda Coomaraswamy in 1904 as uraninite, but recognized as a new species by Wyndham R. Dunstan. It was so named by Dunstan on account of its high percentage of thorium; it also contains the oxides of uranium, lanthanum, cerium, praseodymium and neodymium. Helium is present, and the mineral is slightly less radioactive than pitchblende, but is harder to shield due to its high energy gamma rays. It is common in the alluvial gem-gravels of Sri Lanka, where it occurs mostly as water worn, small, heavy, black, cubic crystals. The largest crystals are usually near 1.5 cm. Larger crystals, up to 6 cm (2.4 in), have been reported from Madagascar.

<span class="mw-page-title-main">Gaylussite</span>

Gaylussite is a carbonate mineral, a hydrated sodium calcium carbonate, formula Na2Ca(CO3)2·5H2O. It occurs as translucent, vitreous white to grey to yellow monoclinic prismatic crystals. It is an unstable mineral which dehydrates in dry air and decomposes in water.

<span class="mw-page-title-main">Stichtite</span> Hydrotalcite group mineral

Stichtite is a mineral, a carbonate of chromium and magnesium; formula Mg6Cr2CO3(OH)16·4H2O. Its colour ranges from pink through lilac to a rich purple colour. It is formed as an alteration product of chromite containing serpentine. It occurs in association with barbertonite (the hexagonal polymorph of Mg6Cr2CO3(OH)16·4H2O), chromite and antigorite.

Clarkeite is a uranium oxide mineral with the chemical formula(Na,Ca,Pb)
2
(UO
2
)
2
(O,OH)
3
or (Na,Ca,Pb)(UO
2
)O(OH)·0-1H
2
O
.

<span class="mw-page-title-main">Coloradoite</span> Rare telluride ore

Coloradoite, also known as mercury telluride (HgTe), is a rare telluride ore associated with metallic deposit. Gold usually occurs within tellurides, such as coloradoite, as a high-finess native metal.

<span class="mw-page-title-main">Semseyite</span>

Semseyite is a rarely occurring sulfosalt mineral and is part of the class of lead antimony sulfides. It crystallizes in the monoclinic system with the chemical composition Pb9Sb8S21. The mineral forms dark gray to black aggregates.

<span class="mw-page-title-main">Winchite</span> Mineral

Winchite is a mineral in the amphibole group.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. 1 2 Mindat.org
  3. 1 2 Webmineral.com
  4. 1 2 Handbook of Mineralogy

Further reading