Kutnohorite

Last updated
Kutnohorite
Kutnohorite-120661.jpg
Kutnohorite, Wessels Mine, Kalahari manganese fields, Northern Cape Province, South Africa. Size 4.4 x 4.2 x 1.9 cm
General
Category Carbonate mineral
Formula
(repeating unit)
CaMn2+(CO3)2
IMA symbol Kut [1]
Strunz classification 5.AB.10
Dana classification14.2.1.3
Crystal system Trigonal
Crystal class Rhombohedral (3)
H-M symbol: (3)
Space group R3
Unit cell 330.60 ų
Identification
Formula mass 215.0 g/mol (end member)
ColorWhite, pale pink or light brown
Crystal habit Aggregates of bundled bladed crystals
Cleavage Perfect on {1011}
Fracture Subconchoidal
Tenacity Brittle
Mohs scale hardness3.5–4
Luster Vitreous to dull
Streak White to pale pink
Diaphaneity Translucent
Specific gravity 3.12
Density 3.10–3.12
Optical propertiesUniaxial (-)
Refractive index no = 1.710–1.727,
ne = 1.519–1.535
Birefringence 0.191–0.192
Solubility Soluble in acids
References [2] [3] [4] [5]

Kutnohorite is a rare calcium manganese carbonate mineral with magnesium and iron that is a member of the dolomite group. It forms a series with dolomite, and with ankerite. The end member formula is CaMn2+(CO3)2, [6] but Mg2+ and Fe2+ commonly substitute for Mn2+, with the manganese content varying from 38% to 84%, [2] so the formula Ca(Mn2+,Mg,Fe2+)(CO3)2 better represents the species. It was named by Professor Bukowsky in 1901 after the type locality of Kutná Hora, Bohemia, in the Czech Republic. [7] It was originally spelt "kutnahorite" but "kutnohorite" is the current IMA-approved spelling.

Contents

Dolomite group

Unit cell

There are three formula units per unit cell (Z = 3) and the lengths of the sides are a close to 4.9 Å and c between 16 Å and 17 Å, although different sources give slightly different values, as follows:

a = 4.915 Å, c = 16.639 Å [2]
a = 4.8518(3) Å, c = 16.217(2) Å [4] [5]
a = 4.85 Å, c = 16.34 Å [3]

Structure

The crystal class is trigonal 3, space group R3, the same as for the other members of the dolomite group. There are layers of (CO3)(2 groups perpendicular to the long crystal axis c, and between these layers there are layers of the cations Ca2+ and Mn2+. [2] If there were perfect ordering amongst the cations they would separate into different layers, giving rise to the ordered sequence: Ca−(CO3)−Mn−(CO3)−Ca−(CO3)−Mn−(CO3)− along the c axis; [2] not all specimens, however, display such ordering. [8]

Optical properties

Kutnohorite may be white, pale pink or light brown. The pink shades are due to increased manganese and the brown colours are due to increased iron content. The mineral is translucent with a white to pale pink streak and vitreous to dull luster. It is uniaxial (-) with refractive indices No = 1.710 to 1.727 and Ne = 1.519 to 1.535, similar to dolomite. The ordinary refractive index, No, is high, comparable with spinel (1.719).

Physical properties

Kutnohorite occurs as aggregates of bundled blades of white through rose pink to light brown crystals. Also as simple rhombs with curved faces, polycrystalline spherules and in massive and granular habits. It has perfect rhombohedral cleavage, typical of carbonates. It is brittle with a subconchoidal fracture and it is quite soft, with hardness 3.5 to 4, between calcite and fluorite. Specific gravity is 3.12, denser than both dolomite and calcite. It is soluble in acids, as are all carbonates.

Occurrence

Kutnohorite occurs typically in manganiferous sediments, associated with rhodochrosite, aragonite and calcite. [5] Notable occurrences include Tuscany, Italy and Kutná Hora, Czech Republic. It probably occurs at the Trepča Mines, Stari Trg, Kosovo, in the Balkans. [9] At the Eldorado Mine, Ouray County, Colorado, US, it occurs as tiny white crystals partially encrusting quartz and dolomite. [10] At the Ryujima Mine, Nagano Prefecture in Japan, magnesian kutnohorite occurs with quartz and rhodochrosite. [11] The type locality is Poličany, Kutná Hora, Central Bohemia Region, Bohemia, Czech Republic, and type material is conserved at Harvard University, Cambridge, Massachusetts, US. [5]

Related Research Articles

<span class="mw-page-title-main">Dolomite (mineral)</span> Carbonate mineral - CaMg(CO₃)₂

Dolomite is an anhydrous carbonate mineral composed of calcium magnesium carbonate, ideally CaMg(CO3)2. The term is also used for a sedimentary carbonate rock composed mostly of the mineral dolomite. An alternative name sometimes used for the dolomitic rock type is dolostone.

<span class="mw-page-title-main">Axinite</span>

Axinite is a brown to violet-brown, or reddish-brown bladed group of minerals composed of calcium aluminium boro-silicate, (Ca,Fe,Mn)3Al2BO3Si4O12OH. Axinite is pyroelectric and piezoelectric.

<span class="mw-page-title-main">Rhodochrosite</span> Mineral of manganese carbonate

Rhodochrosite is a manganese carbonate mineral with chemical composition MnCO3. In its pure form (rare), it is typically a rose-red colour, but it can also be shades of pink to pale brown. It streaks white, and its Mohs hardness varies between 3.5 and 4.5. Its specific gravity is between 3.45 and 3.6. It crystallizes in the trigonal system, and cleaves with rhombohedral carbonate cleavage in three directions. Crystal twinning often is present. It is often confused with the manganese silicate, rhodonite, but is distinctly softer. Rhodochrosite is formed by the oxidation of manganese ore, and is found in South Africa, China, and the Americas. It is officially listed as one of the National symbols of Argentina.

<span class="mw-page-title-main">Smithsonite</span> Mineral of zinc carbonate

Smithsonite, also known as zinc spar, is the mineral form of zinc carbonate (ZnCO3). Historically, smithsonite was identified with hemimorphite before it was realized that they were two different minerals. The two minerals are very similar in appearance and the term calamine has been used for both, leading to some confusion. The distinct mineral smithsonite was named in 1832 by François Sulpice Beudant in honor of English chemist and mineralogist James Smithson (c.1765–1829), who first identified the mineral in 1802.

<span class="mw-page-title-main">Wollastonite</span> Single chain calcium inosilicate (CaSiO3)

Wollastonite is a calcium inosilicate mineral (CaSiO3) that may contain small amounts of iron, magnesium, and manganese substituting for calcium. It is usually white. It forms when impure limestone or dolomite is subjected to high temperature and pressure, which sometimes occurs in the presence of silica-bearing fluids as in skarns or in contact with metamorphic rocks. Associated minerals include garnets, vesuvianite, diopside, tremolite, epidote, plagioclase feldspar, pyroxene and calcite. It is named after the English chemist and mineralogist William Hyde Wollaston (1766–1828).

<span class="mw-page-title-main">Ankerite</span> Calcium, iron, magnesium, manganese carbonate mineral

Ankerite is a calcium, iron, magnesium, manganese carbonate mineral of the group of rhombohedral carbonates with the chemical formula Ca(Fe,Mg,Mn)(CO3)2. In composition it is closely related to dolomite, but differs from this in having magnesium replaced by varying amounts of iron(II) and manganese. It forms a series with dolomite and kutnohorite.

<span class="mw-page-title-main">Barytocalcite</span>

Barytocalcite is an anhydrous barium calcium carbonate mineral with the chemical formula BaCa(CO3)2. It is trimorphous with alstonite and paralstonite, that is to say the three minerals have the same formula but different structures. Baryte and quartz pseudomorphs after barytocalcite have been observed.

<span class="mw-page-title-main">Carbonate mineral</span> Minerals containing the carbonate ion

Carbonate minerals are those minerals containing the carbonate ion, CO2−
3
.

<span class="mw-page-title-main">Todorokite</span> Hydrous manganese oxide mineral

Todorokite is a rare complex hydrous manganese oxide mineral with the chemical formula (Na,Ca,K,Ba,Sr)
1-x
(Mn,Mg,Al)
6
O
12
·3-4H
2
O
. It was named in 1934 for the type locality, the Todoroki mine, Hokkaido, Japan. It belongs to the prismatic class 2/m of the monoclinic crystal system, but the angle β between the a and c axes is close to 90°, making it seem orthorhombic. It is a brown to black mineral which occurs in massive or tuberose forms. It is quite soft with a Mohs hardness of 1.5, and a specific gravity of 3.49 - 3.82. It is a component of deep ocean basin manganese nodules.

<span class="mw-page-title-main">Seamanite</span>

Seamanite, named for discoverer Arthur E. Seaman, is a rare manganese boron phosphate mineral with formula Mn3[B(OH)4](PO4)(OH)2. The yellow to pink mineral occurs as small, needle-shaped crystals. It was first discovered in 1917 from a mine in Iron County, Michigan, United States and identified in 1930. As of 2012, seamanite is known from four sites in Michigan and South Australia.

<span class="mw-page-title-main">Alabandite</span> Sulfide mineral

Alabandite or alabandine is a rarely occurring manganese sulfide mineral. It crystallizes in the cubic crystal system with the chemical composition Mn2+S and develops commonly massive to granular aggregates, but rarely also cubic or octahedral crystals to 1 cm.

<span class="mw-page-title-main">Fluckite</span>

Fluckite is an arsenate mineral with the chemical formula CaMnH2(AsO4)2·2(H2O).

Arsenoclasite (originally arsenoklasite) is a red or dark orange brown mineral with formula Mn5(AsO4)2(OH)4. The name comes from the Greek words αρσενικόν (for arsenic) and κλάσις (for cleavage), as arsenoclasite contains arsenic and has perfect cleavage. The mineral was discovered in 1931 in Långban, Sweden.

<span class="mw-page-title-main">Sonolite</span>

Sonolite is a mineral with formula Mn9(SiO4)4(OH,F)2. The mineral was discovered in 1960 in the Sono mine in Kyoto Prefecture, Japan. In 1963, it was identified as a new mineral and named after the Sono mine.

<span class="mw-page-title-main">Leucophoenicite</span>

Leucophoenicite is a mineral with formula Mn7(SiO4)3(OH)2. Generally brown to red or pink in color, the mineral gets its name from the Greek words meaning "pale purple-red". Leucophoenicite was discovered in New Jersey, US and identified as a new mineral in 1899.

<span class="mw-page-title-main">Sarkinite</span>

Sarkinite, synonymous with chondrarsenite and polyarsenite, is a mineral with formula Mn2(AsO4)(OH). The mineral is named for the Greek word σάρκιυος, meaning made of flesh, for its red color and greasy luster. The mineral was first noted in Sweden in 1865 as chondrarsenite, though not identified as sarkinite until 1885.

<span class="mw-page-title-main">Collinsite</span>

Collinsite is a mineral with chemical formula Ca
2
(Mg,Fe2+
)(PO
4
)
2
•2H
2
O
. It was discovered in British Columbia, Canada, and formally described in 1927. It was named in honor of William Henry Collins (1878–1937), director of the Geological Survey of Canada. There are three varieties of the mineral: magnesian collinsite, zincian collinsite, and strontian collinsite. The crystal structure consists of polyhedral chains linked by weak hydrogen bonds.

<span class="mw-page-title-main">Ianbruceite</span>

Ianbruceite is a rare hydrated zinc arsenate with the formula [Zn2(OH)(H2O)(AsO4)](H2O)2; material from the Driggith mine has traces of cobalt. It was first discovered at Tsumeb, approved by the International Mineralogical Association as a new mineral species in 2011, reference IMA2011-49, and named for Ian Bruce, who founded "Crystal Classics" in the early 1990s, and was heavily involved in attempts to reopen the famous Tsumeb mine for specimen mining.
In 2013 new occurrences of ianbruceite were reported from the neighbouring Driggith and Potts Gill mines on High Pike in the Caldbeck Fells, Cumbria, England. Here the mineral is probably a post-mining product. Caldbeck Fells and Tsumeb are the only reported localities for ianbruceite to date (May 2013).

Chvaleticeite is a monoclinic hexahydrite manganese magnesium sulfate mineral with formula: (Mn2+, Mg)[SO4]·6(H2O). It occurs in the oxidized zone of manganese silicate deposits with pyrite and rhodochrosite that have undergone regional and contact metamorphism. It is defined as the manganese dominant member of the hexahydrite group.

<span class="mw-page-title-main">Talmessite</span>

Talmessite is a hydrated calcium magnesium arsenate, often with significant amounts of cobalt or nickel. It was named in 1960 for the type locality, the Talmessi mine, Anarak district, Iran. It forms a series with β-Roselite, where cobalt replaces some of the magnesium, and with gaitite, where zinc replaces the magnesium. All these minerals are members of the fairfieldite group. Talmessite is dimorphic with wendwilsonite.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. 1 2 3 4 5 Gaines et al (1997) Dana’s New Mineralogy Eighth Edition. Wiley
  3. 1 2 Barthelmy, David (2014). "Kutnohorite Mineral Data". Webmineral.com. Retrieved 8 August 2022.
  4. 1 2 Kutnohorite, Mindat.org , retrieved 8 August 2022
  5. 1 2 3 4 Anthony, John W.; Bideaux, Richard A.; Bladh, Kenneth W.; Nichols, Monte C. (2005). "Kutnohorite" (PDF). Handbook of Mineralogy. Mineral Data Publishing. Retrieved 8 August 2022.
  6. "IMA Mineral List with Database of Mineral Properties".
  7. Frondel, Clifford and Bauer, L H (1955), Kutnahorite, a manganese dolomite, CaMn(CO3)2. American Mineralogist 40: 748
  8. Peacor, D R, Essene, E J and Gaines, A M (1987) Petrologic and crystal-chemical implications of cation order-disorder in kutnahorite. American Mineralogist 72:319
  9. The Mineralogical Record (2007) 38-4:284
  10. Rocks & Minerals (2009) 84-5:423
  11. Akio Tsusue (1967) Magnesian Kutnahorite from Ryujima Mine, Japan. American Mineralogist 52:1751