Tephroite | |
---|---|
Tephroite from Japan | |
General | |
Category | Silicate mineral |
Formula (repeating unit) | Mn2SiO4 |
Crystal system | Orthorhombic |
Crystal class | Dipyramidal (mmm) H-M symbol: (2/m 2/m 2/m) |
Unit cell | a = 4.88(2) Å, b = 10.61(2) Å c = 6.24(2) Å; Z = 4 |
Identification | |
Color | Olive-green, bluish green, gray, °esh-red, reddish brown; pale green in thin section, may be colorless |
Crystal habit | Crystals typically short, prismatic, to 4 cm, or anhedral, equidimensional. Commonly in disseminated grains, compact, or massive. |
Twinning | Uncommon on {011} |
Cleavage | {010}, distinct; {001}, imperfect |
Fracture | Uneven to conchoidal |
Tenacity | Brittle |
Mohs scale hardness | 6 |
Luster | Vitreous to greasy |
Streak | Pale gray |
Diaphaneity | Transparent to translucent |
Specific gravity | 3.87 – 4.12 |
Optical properties | Biaxial (-) |
Refractive index | nα = 1.759 nβ = 1.797 nγ = 1.860 |
Birefringence | δ = 0.101 |
Pleochroism | Weak; X = brownish red; Y = reddish; Z = greenish blue. |
2V angle | Measured: 60° to 70°, Calculated: 78° |
References | [1] [2] [3] |
Tephroite is the manganese endmember of the olivine group of nesosilicate minerals with the formula Mn 2 Si O 4. A solid solution series exists between tephroite and its analogues, the group endmembers fayalite and forsterite. Divalent iron or magnesium may readily replace manganese in the olivine crystal structure.
Manganese is a chemical element with the symbol Mn and atomic number 25. It is not found as a free element in nature; it is often found in minerals in combination with iron. Manganese is a transition metal with important industrial alloy uses, particularly in stainless steels.
An endmember in mineralogy is a mineral that is at the extreme end of a mineral series in terms of purity. Minerals often can be described as solid solutions with varying compositions of some chemical elements, rather than as substances with an exact chemical formula. There may be two or more endmembers in a group or series of minerals.
The mineral olivine is a magnesium iron silicate with the formula (Mg2+, Fe2+)2SiO4. Thus it is a type of nesosilicate or orthosilicate. The primary component of the earth's upper mantle, it is a common mineral in Earth's subsurface but weathers quickly on the surface.
It was first described for an occurrence at the Sterling Hill Mine and Franklin, New Jersey, United States. [2] It occurs in iron-manganese ore deposits and their related skarns. It also occurs in metamorphosed manganese-rich sediments. It occurs in association with: zincite, willemite, franklinite, rhodonite, jacobsite, diopside, gageite, bustamite, manganocalcite, glaucochroite, calcite, banalsite and alleghanyite. [1] It can also be found in England and Sweden.
Franklin is a borough in Sussex County, New Jersey, United States. As of the 2010 United States Census, the borough's population was 5,045 reflecting a decline of 115 (-2.2%) from the 5,160 counted in the 2000 Census, which had in turn increased by 183 (+3.7%) from the 4,977 counted in the 1990 Census.
Skarns or tactites are hard, coarse-grained metamorphic rocks that form by a process called metasomatism. Skarns tend to be rich in calcium-magnesium-iron-manganese-aluminium silicate minerals, which are also referred to as calc-silicate minerals. These minerals form as a result of alteration which occurs when hydrothermal fluids interact with a protolith of either igneous or sedimentary origin. In many cases, skarns are associated with the intrusion of a granitic pluton found in and around faults or Shear zones that intrude into a carbonate layer composed of either dolomite or limestone. Skarns can form by regional, or contact metamorphism and therefore form in relatively high temperature environments. The hydrothermal fluids associated with the metasomatic processes can originate from either magmatic, metamorphic, meteoric, marine, or even a mix of these. The resulting skarn may consist of a variety of different minerals which are highly dependent on the original composition of both the hydrothermal fluid and the original composition of the protolith.
Metamorphism is the change of minerals or geologic texture in pre-existing rocks (protoliths), without the protolith melting into liquid magma. The change occurs primarily due to heat, pressure, and the introduction of chemically active fluids. The chemical components and crystal structures of the minerals making up the rock may change even though the rock remains a solid. Changes at or just beneath Earth's surface due to weathering or diagenesis are not classified as metamorphism. Metamorphism typically occurs between diagenesis, and melting (~850°C).
Tephroite has a hardness of 6 and a specific gravity of approximately 4.1, which is heavy for non-metallic minerals. Its name comes from the Greek tephros, "ash gray", for its color. [3] It can also be found olive-green, greenish-blue, pink, or brown. Other names for tephroite include mangan olivine and mangan peridot.
Specific gravity is the ratio of the density of a substance to the density of a reference substance; equivalently, it is the ratio of the mass of a substance to the mass of a reference substance for the same given volume. Apparent specific gravity is the ratio of the weight of a volume of the substance to the weight of an equal volume of the reference substance. The reference substance for liquids is nearly always water at its densest ; for gases it is air at room temperature. Nonetheless, the temperature and pressure must be specified for both the sample and the reference. Pressure is nearly always 1 atm (101.325 kPa).
Augite is a common rock-forming pyroxene mineral with formula (Ca,Na)(Mg,Fe,Al,Ti)(Si,Al)2O6. The crystals are monoclinic and prismatic. Augite has two prominent cleavages, meeting at angles near 90 degrees.
Staurolite is a red brown to black, mostly opaque, nesosilicate mineral with a white streak. It crystallizes in the monoclinic crystal system, has a Mohs hardness of 7 to 7.5 and the chemical formula: Fe2+2Al9O6(SiO4)4(O,OH)2. Magnesium, zinc and manganese substitute in the iron site and trivalent iron can substitute for aluminium.
Pyrolusite is a mineral consisting essentially of manganese dioxide (MnO2) and is important as an ore of manganese. It is a black, amorphous appearing mineral, often with a granular, fibrous or columnar structure, sometimes forming reniform crusts. It has a metallic luster, a black or bluish-black streak, and readily soils the fingers. The specific gravity is about 4.8. Its name is from the Greek for fire and to wash, in reference to its use as a way to remove tints from glass.
Forsterite (Mg2SiO4; commonly abbreviated as Fo; also known as white olivine) is the magnesium-rich end-member of the olivine solid solution series. It is isomorphous with the iron-rich end-member, fayalite. Forsterite crystallizes in the orthorhombic system (space group Pbnm) with cell parameters a 4.75 Å (0.475 nm), b 10.20 Å (1.020 nm) and c 5.98 Å (0.598 nm).
Jadeite is a pyroxene mineral with composition NaAlSi2O6. It is monoclinic. It has a Mohs hardness of about 6.5 to 7.0 depending on the composition. The mineral is dense, with a specific gravity of about 3.4.
Albite is a plagioclase feldspar mineral. It is the sodium endmember of the plagioclase solid solution series. It represents a plagioclase with less than 10% anorthite content. The pure albite endmember has the formula NaAlSi3O8. It is a tectosilicate. Its color is usually pure white, hence its name from Latin albus. It is a common constituent in felsic rocks.
Glaucophane is the name of a mineral and a mineral group belonging to the sodic amphibole supergroup of the double chain inosilicates, with the chemical formula ☐Na2(Mg3Al2)Si8O22(OH)2.
Fayalite (Fe2SiO4; commonly abbreviated to Fa), also called iron chrysolite, is the iron-rich end-member of the olivine solid-solution series. In common with all minerals in the olivine group, fayalite crystallizes in the orthorhombic system (space group Pbnm) with cell parameters a 4.82 Å, b 10.48 Å and c 6.09 Å.
Cummingtonite is a metamorphic amphibole with the chemical composition (Mg,Fe2+)2(Mg,Fe2+)5Si8O22(OH)2, magnesium iron silicate hydroxide.
Hübnerite or hubnerite is a mineral consisting of manganese tungsten oxide (chemical formula: MnWO4, it isn't a tungstate). It is the manganese endmember of the manganese - iron wolframite solid solution series. It forms reddish brown to black monoclinic prismatic submetallic crystals. The crystals are typically flattened and occur with fine striations. It has a high specific gravity of 7.15 and a Mohs hardness of 4.5. It is transparent to translucent with perfect cleavage. Refractive index values are nα=2.170 - 2.200, nβ=2.220, and nγ=2.300 - 2.320.
Adamite is a zinc arsenate hydroxide mineral, Zn2AsO4OH. It is a mineral that typically occurs in the oxidized or weathered zone above zinc ore occurrences. Pure adamite is colorless, but usually it possess yellow color due to Fe compounds admixture. Tints of green also occur and are connected with copper substitutions in the mineral structure. Olivenite is a copper arsenate that is isostructural with adamite and there is considerable substitution between zinc and copper resulting in an intermediate called cuproadamite. Zincolivenite is a recently discovered mineral being an intermediate mineral with formula CuZn(AsO4)(OH). Manganese, cobalt, and nickel also substitute in the structure. An analogous zinc phosphate, tarbuttite, is known.
Ferberite is the iron endmember of the manganese - iron wolframite solid solution series. The manganese endmember is hübnerite. Ferberite is a black monoclinic mineral composed of iron(II) tungstate, FeWO4.
Willemite is a zinc silicate mineral (Zn2SiO4) and a minor ore of zinc. It is highly fluorescent (green) under shortwave ultraviolet light. It occurs in all different colors in daylight, in fibrous masses, solid brown masses ("troostite"), and apple green gemmy masses.
Aegirine is a member of the clinopyroxene group of inosilicate minerals. Aegirine is the sodium endmember of the aegirine-augite series. Aegirine has the chemical formula NaFeSi2O6 in which the iron is present as Fe3+. In the aegirine-augite series the sodium is variably replaced by calcium with iron(II) and magnesium replacing the iron(III) to balance the charge. Aluminium also substitutes for the iron(III). It is also known as acmite, which is a fibrous, green-colored variety.
Purpurite is a mineral, manganese phosphate, MnPO4 with varying amounts of iron depending upon its source. It occurs in color ranges from brownish black via purple and violet to dark red.
Galaxite, also known as 'mangan-spinel' is an isometric mineral belonging to the spinel group of oxides with the ideal chemical formula Mn2+Al2O4.
Gedrite is a crystal belonging to the orthorhombic ferromagnesian subgroup of the amphibole supergroup of the double chain inosilicate minerals with the ideal formula: Mg2(Mg3Al2)(Si6Al2)O22(OH)2
Kaersutite is a dark brown to black double chain calcic titanium bearing amphibole mineral with formula: NaCa2(Mg3Ti4+Al)(Si6Al2)O22(OH)2.
Bustamite is a calcium manganese inosilicate (chain silicate) and a member of the wollastonite group. Magnesium, zinc and iron are common impurities substituting for manganese. Bustamite is the high-temperature polymorph of CaMnSi2O6 and johannsenite is the low temperature polymorph. The inversion takes place at 830 °C (1,530 °F), but may be very slow.
Bustamite could be confused with light-colored rhodonite or pyroxmangite, but both these minerals are biaxial (+) whereas bustamite is biaxial (-).
Sonolite is a mineral with formula Mn9(SiO4)4(OH,F)2. The mineral was discovered in 1960 in the Sono mine in Kyoto Prefecture, Japan. In 1963, it was identified as a new mineral and named after the Sono mine.
This article about a specific silicate mineral is a stub. You can help Wikipedia by expanding it. |