Pyroxferroite

Last updated
Pyroxferroite
Pyroxferroite.jpg
Pyroxferroite
General
Category Inosilicate
Formula
(repeating unit)
(Fe2+,Ca)SiO3
IMA symbol Pxf [1]
Strunz classification 9.DO.05
Crystal system Triclinic
Space group P1 (no. 2)
Unit cell a = 6.6213 Å,
b = 7.5506 Å,
c = 17.3806 Å,
α = 114.267°, β = 82.684°, γ = 94.756°, Z = 14
Identification
ColorYellow
Cleavage Good on (010), poor on (001)
Mohs scale hardness4.5–5.5
Luster Vitreous
Streak White
Specific gravity 3.68–3.76 g/cm3 (measured)
Optical propertiesBiaxial (+)
Refractive index nα = 1.748–1.756
nβ = 1.750–1.758
nγ = 1.767–1.768
Pleochroism Faint; pale yellow to yellow-orange
2V angle 34–40°
References [2] [3] [4] [5] [6]

Pyroxferroite (Fe2+,Ca)SiO3 is a single chain inosilicate. It is mostly composed of iron, silicon and oxygen, with smaller fractions of calcium and several other metals. [2] Together with armalcolite and tranquillityite, it is one of the three minerals which were discovered on the Moon during the 1969 Apollo 11 mission. It was then found in Lunar and Martian meteorites as well as a mineral in the Earth's crust. Pyroxferroite can also be produced by annealing synthetic clinopyroxene at high pressures and temperatures. The mineral is metastable and gradually decomposes at ambient conditions, but this process can take billions of years.

Contents

Etymology

Pyroxferroite is named from pyroxene and ferrum (Latin for iron), as the iron-rich analogue of pyroxmangite. [2] The word pyroxene, in turn comes from the Greek words for fire (πυρ) and stranger (ξένος). Pyroxenes were named this way because of their presence in volcanic lavas, where they are sometimes seen as crystals embedded in volcanic glass; it was assumed they were impurities in the glass, hence the name "fire strangers". However, they are simply early-forming minerals that crystallized before the lava erupted. [7] [8]

Occurrence

Pyroxferroite was first discovered in 1969 in lunar rock samples from Tranquility Base, the Sea of Tranquility landing site of Apollo 11. [5] Together with armalcolite and tranquillityite, it is one of the three minerals which were first found on the Moon. [9] Later, pyroxferroite was detected in Lunar and Martian meteorites recovered in Oman. It also occurs in the Earth's crust, in association with clinopyroxene, plagioclase, ilmenite, cristobalite, tridymite, fayalite, fluorapatite and potassic feldspar, and forms series with pyroxmangite. Pyroxferroite has been found in the Isanago mine, in Kyoto Prefecture, Japan; near Iva, Anderson County, South Carolina, US; from Väster Silfberg, Värmland, Sweden; and Lapua, Finland. [2] [3] In the original lunar samples, pyroxferroite was associated with similar minerals, but also with troilite which is rare on Earth, but is common on the Moon and Mars. [5]

Synthesis

Synthetic pyroxferroite crystals can be produced by compressing synthetic clinopyroxene (composition Ca0.15Fe0.85SiO3) to a pressure in the range of 10–17.5 kbar and heating it to 1130–1250 °C. It is metastable at low temperatures and pressures: at pressures below 10 kbar pyroxferroite converts to a mixture of olivine, pyroxene and a silicon dioxide phase, whereas at low temperatures, it transforms to a clinopyroxene. [5] The presence of cristobalite, vesicular texture and some other petrographic observations indicate that the lunar pyroxferroite was produced upon rapid cooling from low-pressure and high-temperature (volcanic) conditions, i.e. that the mineral is metastable. However, the conversion rate is very slow and pyroxferroite can exist at low temperatures for periods longer than 3 billion years. [10]

Crystal structure. Colors: blue - Fe, gray - Si, red - oxygen. PyroxferroiteStructure.png
Crystal structure. Colors: blue – Fe, gray – Si, red – oxygen.

Properties

The crystal structure of pyroxferroite contains silicon-oxygen chains with a repeat period of seven SiO4 tetrahedra. These chains are separated by polyhedra where a central metal atom is surrounded by 6 or 7 oxygen atoms; there are 7 inequivalent metal polyhedra in the unit cell. The resulted layers are parallel to (110) planes in pyroxferroite, whereas they are parallel to (100) planes in pyroxenes. [11]

Chemical composition of pyroxferroite can be decomposed into elementary oxides as follows: FeO (concentration 44–48%), SiO2(45–47%), CaO (4.7–6.1%), MnO (0.6–1.3%), MgO (0.3-1%), TiO2 (0.2–0.5%) and Al2O3 (0.2–1.2%). Whereas magnesium is usually present at about 0.8%, in some samples it had an undetectably low concentration. [5]

Related Research Articles

<span class="mw-page-title-main">Mineral</span> Crystalline chemical element or compound formed by geologic processes

In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid substance with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.

<span class="mw-page-title-main">Olivine</span> Magnesium iron silicate solid solution series mineral

The mineral olivine is a magnesium iron silicate with the chemical formula (Mg,Fe)2SiO4. It is a type of nesosilicate or orthosilicate. The primary component of the Earth's upper mantle, it is a common mineral in Earth's subsurface, but weathers quickly on the surface. For this reason, olivine has been proposed as a good candidate for accelerated weathering to sequester carbon dioxide from the Earth's oceans and atmosphere, as part of climate change mitigation. Olivine also has many other historical uses, such as the gemstone peridot, as well as industrial applications like metalworking processes.

<span class="mw-page-title-main">Amphibole</span> Group of inosilicate minerals

Amphibole is a group of inosilicate minerals, forming prism or needlelike crystals, composed of double chain SiO
4
tetrahedra, linked at the vertices and generally containing ions of iron and/or magnesium in their structures. Its IMA symbol is Amp. Amphiboles can be green, black, colorless, white, yellow, blue, or brown. The International Mineralogical Association currently classifies amphiboles as a mineral supergroup, within which are two groups and several subgroups.

<span class="mw-page-title-main">Pyroxene</span> Group of inosilicate minerals with single chains of silica tetrahedra

The pyroxenes are a group of important rock-forming inosilicate minerals found in many igneous and metamorphic rocks. Pyroxenes have the general formula XY(Si,Al)2O6, where X represents calcium (Ca), sodium (Na), iron or magnesium (Mg) and more rarely zinc, manganese or lithium, and Y represents ions of smaller size, such as chromium (Cr), aluminium (Al), magnesium (Mg), cobalt (Co), manganese (Mn), scandium (Sc), titanium (Ti), vanadium (V) or even iron. Although aluminium substitutes extensively for silicon in silicates such as feldspars and amphiboles, the substitution occurs only to a limited extent in most pyroxenes. They share a common structure consisting of single chains of silica tetrahedra. Pyroxenes that crystallize in the monoclinic system are known as clinopyroxenes and those that crystallize in the orthorhombic system are known as orthopyroxenes.

<span class="mw-page-title-main">Armalcolite</span> Oxide mineral

Armalcolite is a titanium-rich mineral with the chemical formula (Mg,Fe2+)Ti2O5. It was first found at Tranquility Base on the Moon in 1969 during the Apollo 11 mission, and is named for Armstrong, Aldrin and Collins, the three Apollo 11 astronauts. Together with tranquillityite and pyroxferroite, it is one of three new minerals that were discovered on the Moon. Armalcolite was later identified at various locations on Earth and has been synthesized in the laboratory. (Tranquillityite and pyroxferroite were also later found at various locations on Earth). The synthesis requires low pressures, high temperatures and rapid quenching from about 1,000 °C to the ambient temperature. Armalcolite breaks down to a mixture of magnesium-rich ilmenite and rutile at temperatures below 1,000 °C, but the conversion slows down with cooling. Because of this quenching requirement, armalcolite is relatively rare and is usually found in association with ilmenite and rutile, among other minerals.

<span class="mw-page-title-main">Cristobalite</span> Silica mineral, polymorph of quartz

Cristobalite is a mineral polymorph of silica that is formed at very high temperatures. It has the same chemical formula as quartz, SiO2, but a distinct crystal structure. Both quartz and cristobalite are polymorphs with all the members of the quartz group, which also include coesite, tridymite and stishovite. It is named after Cerro San Cristóbal in Pachuca Municipality, Hidalgo, Mexico.

<span class="mw-page-title-main">Coesite</span> Silica mineral, rare polymorph of quartz

Coesite is a form (polymorph) of silicon dioxide (SiO2) that is formed when very high pressure (2–3 gigapascals), and moderately high temperature (700 °C, 1,300 °F), are applied to quartz. Coesite was first synthesized by Loring Coes, Jr., a chemist at the Norton Company, in 1953.

<span class="mw-page-title-main">Peridotite</span> Coarse-grained ultramafic igneous rock type

Peridotite ( PERR-ih-doh-tyte, pə-RID-ə-) is a dense, coarse-grained igneous rock consisting mostly of the silicate minerals olivine and pyroxene. Peridotite is ultramafic, as the rock contains less than 45% silica. It is high in magnesium (Mg2+), reflecting the high proportions of magnesium-rich olivine, with appreciable iron. Peridotite is derived from Earth's mantle, either as solid blocks and fragments, or as crystals accumulated from magmas that formed in the mantle. The compositions of peridotites from these layered igneous complexes vary widely, reflecting the relative proportions of pyroxenes, chromite, plagioclase, and amphibole.

<span class="mw-page-title-main">Jadeite</span> Pyroxene mineral

Jadeite is a pyroxene mineral with composition NaAlSi2O6. It is hard (Mohs hardness of about 6.5 to 7.0), very tough, and dense, with a specific gravity of about 3.4. It is found in a wide range of colors, but is most often found in shades of green or white. Jadeite is formed only in the subduction zones of continental margins, where rock undergoes metamorphism at high pressure but relatively low temperature.

<span class="mw-page-title-main">Tridymite</span> Silica mineral, polymorph of quartz

Tridymite is a high-temperature polymorph of silica and usually occurs as minute tabular white or colorless pseudo-hexagonal crystals, or scales, in cavities in felsic volcanic rocks. Its chemical formula is SiO2. Tridymite was first described in 1868 and the type location is in Hidalgo, Mexico. The name is from the Greek tridymos for triplet as tridymite commonly occurs as twinned crystal trillings (compound crystals comprising three twinned crystal components).

<span class="mw-page-title-main">Chlorite group</span> Type of mineral

The chlorites are the group of phyllosilicate minerals common in low-grade metamorphic rocks and in altered igneous rocks. Greenschist, formed by metamorphism of basalt or other low-silica volcanic rock, typically contains significant amounts of chlorite.

<span class="mw-page-title-main">Stishovite</span> Tetragonal form of silicon dioxide

Stishovite is an extremely hard, dense tetragonal form (polymorph) of silicon dioxide. It is very rare on the Earth's surface; however, it may be a predominant form of silicon dioxide in the Earth, especially in the lower mantle.

<span class="mw-page-title-main">Julgoldite</span>

Julgoldite is a member of the pumpellyite mineral series, a series of minerals characterized by the chemical bonding of silica tetrahedra with alkali and transition metal cations. Julgoldites, along with more common minerals like epidote and vesuvianite, belong to the subclass of sorosilicates, the rock-forming minerals that contain SiO4 tetrahedra that share a common oxygen to form Si2O7 ions with a charge of 6- (Deer et al., 1996). Julgoldite has been recognized for its importance in low grade metamorphism, forming under shear stress accompanied by relatively low temperatures (Coombs, 1953). Julgoldite was named in honor of Professor Julian Royce Goldsmith (1918–1999) of the University of Chicago.

Magmatic water, also known as juvenile water, is an aqueous phase in equilibrium with minerals that have been dissolved by magma deep within the Earth's crust and is released to the atmosphere during a volcanic eruption. It plays a key role in assessing the crystallization of igneous rocks, particularly silicates, as well as the rheology and evolution of magma chambers. Magma is composed of minerals, crystals and volatiles in varying relative natural abundance. Magmatic differentiation varies significantly based on various factors, most notably the presence of water. An abundance of volatiles within magma chambers decreases viscosity and leads to the formation of minerals bearing halogens, including chloride and hydroxide groups. In addition, the relative abundance of volatiles varies within basaltic, andesitic, and rhyolitic magma chambers, leading to some volcanoes being exceedingly more explosive than others. Magmatic water is practically insoluble in silicate melts but has demonstrated the highest solubility within rhyolitic melts. An abundance of magmatic water has been shown to lead to high-grade deformation, altering the amount of δ18O and δ2H within host rocks.

<span class="mw-page-title-main">Clinopyroxene thermobarometry</span>

Clinopyroxene thermobarometry is a scientific method that uses the mineral clinopyroxene to determine the temperature and pressure of the magma when the mineral crystalized. Clinopyroxene is found in many igneous rocks, so the method can be used to determine information about the entire rock. Many different minerals can be used for geothermobarometry, but clinopyroxene is especially useful because it's a common phenocryst in igneous rocks and easy to identify, and the crystallization of jadeite, a type of clinopyroxene, implies a growth in molar volume, making it a good indicator of pressure.

<span class="mw-page-title-main">Bustamite</span>

Bustamite is a calcium manganese inosilicate (chain silicate) and a member of the wollastonite group. Magnesium, zinc and iron are common impurities substituting for manganese. Bustamite is the high-temperature polymorph of CaMnSi2O6 and johannsenite is the low temperature polymorph. The inversion takes place at 830 °C (1,530 °F), but may be very slow.
Bustamite could be confused with light-colored rhodonite or pyroxmangite, but both these minerals are biaxial (+) whereas bustamite is biaxial (−).

<span class="mw-page-title-main">Pyroxmangite</span>

Pyroxmangite has the general chemical formula of MnSiO3. It is the high-pressure, low-temperature dimorph of rhodonite.

<span class="mw-page-title-main">Kanoite</span>

Kanoite is a light pinkish brown silicate mineral that is found in metamorphic rocks. It is an inosilicate and has a chemical formula of (Mg,Mn2+)2Si2O6. It is a member of pyroxene group and clinopyroxene subgroup.

Tranquillityite is silicate mineral with formula (Fe2+)8Ti3Zr2 Si3O24. It is mostly composed of iron, oxygen, silicon, zirconium and titanium with smaller fractions of yttrium and calcium. It is named after the Mare Tranquillitatis (Sea of Tranquility), the place on the Moon where the rock samples were found during the 1969 Apollo 11 mission. It was the last mineral brought from the Moon which was thought to be unique, with no counterpart on Earth, until it was discovered in Australia in 2011.

<span class="mw-page-title-main">Dorrite</span>

Dorrite is a silicate mineral that is isostructural to the aenigmatite group. It is most chemically similar to the mineral rhönite [Ca2Mg5Ti(Al2Si4)O20], made distinct by a lack of titanium (Ti) and the presence of Fe3+. Dorrite is named for Dr. John (Jack) A. Dorr, a late professor at the University of Michigan that researched in outcrops where dorrite was found in 1982. This mineral is sub-metallic resembling colors of brownish-black, dark brown, to reddish brown.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. 1 2 3 4 "Pyroxferroite" (PDF). Handbook of Mineralogy. Retrieved 2009-08-07.
  3. 1 2 "Pyroxferroite". Mindat.org. Retrieved 2010-08-07.
  4. "Pyroxferroite". Webmineral. Retrieved 2010-08-07.
  5. 1 2 3 4 5 Chao, E. C. T.; et al. (1970). "Pyrox-ferrite, a new calcium-bearing iron silicate from Tranquillity Base". Geochimica et Cosmochimica Acta Supplement. 1: 65. Bibcode:1970GeCAS...1...65C.
  6. Windley, B.F. (1973). "Proceedings of the Second Lunar Science Conference". Journal of Geology. 81 (4): 523–524. Bibcode:1973JG.....81..523W. doi:10.1086/627901.
  7. Concise English Dictionary, Wordsworth Editions, 2007 ISBN   1-84022-497-5 p. 757
  8. William Alexander Deer, Robert Andrew Howie, J. Zussman Single-chain silicates, Volume 2, Geological Society, 1997, ISBN   1-897799-85-3, p. 3
  9. Lunar Sample Mineralogy, NASA
  10. Lindsley, D. H.; Burnham, C. W. (1970). "Pyroxferroite: Stability and X-ray Crystallography of Synthetic Ca0.15Fe0.85SiO3 Pyroxenoid". Science. 168 (3929): 364–7. Bibcode:1970Sci...168..364L. doi:10.1126/science.168.3929.364. PMID   17809134. S2CID   6554378.
  11. Burnham, C. W. (1971). "The crystal structure of pyroxferroite from Mare Tranquillitatis". Proceedings of the Lunar Science Conference. 2: 47. Bibcode:1971LPSC....2...47B.