Capacitive micromachined ultrasonic transducer

Last updated

A capacitive micromachined ultrasonic transducer (CMUT) is a relatively new concept in the field of ultrasonic transducers. Most of the commercial ultrasonic transducers today are based on piezoelectricity. CMUTs are the transducers where the energy transduction is due to change in capacitance. CMUTs are constructed on silicon using micromachining techniques. A cavity is formed in a silicon substrate, and a thin layer suspended on the top of the cavity serves as a membrane on which a metallized layer acts an electrode, together with the silicon substrate which serves as a bottom electrode.

Contents

If an AC signal is applied across the biased electrodes, the vibrating membrane will produce ultrasonic waves in the medium of interest. In this way it works as a transmitter. On the other hand, if ultrasonic waves are applied on the membrane of a biased CMUT, it will generate alternating signal as the capacitance of the CMUT is varied. In this way, it works as a receiver of ultrasonic waves. [1]

As CMUTs are micromachined devices, it is easier to construct 2D arrays of transducers using this technology. This means large numbers of CMUTs could be included in a transducer array providing larger bandwidth compared to other transducer technologies. To achieve a high frequency operation using CMUTs is easier due to its smaller dimensions. [2] The frequency of operation depends on the cell size (cavity of membrane), and on the stiffness of the material used as a membrane. As it is built on silicon, the integration of electronics would be easier for the CMUTs compared to other transducer technologies. The properties to use in high frequency with large bandwidth makes it a good choice to use as a transducer in medical imaging, especially in an intravascular ultrasound (IVUS). Because of its broader bandwidth, it could be used in second-harmonic imaging. Also some experiments have been performed to use CMUTs as hydrophones.

Fabrication methods

Sacrificial release surface micromachining

Surface micromachining is the traditional way of manufacturing CMUTs. [3] The major limitations of this method include complicated manufacturing process for constructing and sealing etch/drainage channels of the sacrificial material; the need for sacrificial-release channels reduces the available space for transducers, thereby reducing the achievable sound generation capability; limited control of layers' thickness during the manufacturing process; limited cavity thickness due to residues of fluid inside the cell cavity, which can cause stiction between the upper and lower parts of the cell, if the cell is not thick enough. [3]

Wafer bonding

Wafer bonding is the most popular method. In this method, a CMUT is built from two separate wafers, which are later bonded to achieve cells with cavities.

Fusion-bonding

Fusion-bonding of wafers. [4] [5] [6] [7]

Multi-user MUMPS (polyMUMPS) process. CMUTs manufactured in the multi-user MUMPS were reported to have reduced performance, such as relatively low resonating frequency. [8]

Anodic bonding

In anodic bonding, wafers are sealed at high temperature and in the presence of electric field. [9]

Top-down process

In this method the manufacturing is performed in reverse order, compared to the traditional way. [10] [11] The structural membrane is in silicon-nitride LPCVD, but the entire process is low-temperature, so it is CMOS-compatible. There are no etch-hole on the radiating surface of the device. The connection pads are on the back of the device, without using of through VIAs in the silicon, and the silicon substrate is completely removed. A custom acoustic backing is used to improve acoustic performances of the device. The process uses few masks (7–8). [12]

Integration with electrical circuits

As mentioned earlier, one of the significant advantages of CMUTs over piezoelectric transducers is the ability to integrate CMUTs with electrical circuits, using existing manufacturing methods.

Benchmarking

CMUT performance is benchmarked using pitch-catch and pulse-echo experiments, and operation uniformity is tested in air and in immersion. In a pitch-catch experiment, the transducer is benchmarked using a hydrophone, and in a pulse-echo experiment, the transducer is used both for transmitting and receiving, while comparing the measured signal to the hydrophone response.

Applications

The CMUT-on-CMOS technology and the flip-chip process allows tight integration of CMUTs with front-end electronics, which is necessary for miniature medical imaging devices, such as IVUS.

Related Research Articles

<span class="mw-page-title-main">MEMS</span> Very small devices that incorporate moving components

MEMS is the technology of microscopic devices incorporating both electronic and moving parts. MEMS are made up of components between 1 and 100 micrometres in size, and MEMS devices generally range in size from 20 micrometres to a millimetre, although components arranged in arrays can be more than 1000 mm2. They usually consist of a central unit that processes data and several components that interact with the surroundings.

<span class="mw-page-title-main">Semiconductor device fabrication</span> Manufacturing process used to create integrated circuits

Semiconductor device fabrication is the process used to manufacture semiconductor devices, typically integrated circuits (ICs) such as computer processors, microcontrollers, and memory chips that are present in everyday electronic devices. It is a multiple-step photolithographic and physio-chemical process during which electronic circuits are gradually created on a wafer, typically made of pure single-crystal semiconducting material. Silicon is almost always used, but various compound semiconductors are used for specialized applications.

Silicon on sapphire (SOS) is a hetero-epitaxial process for metal–oxide–semiconductor (MOS) integrated circuit (IC) manufacturing that consists of a thin layer of silicon grown on a sapphire wafer. SOS is part of the silicon-on-insulator (SOI) family of CMOS technologies.

Surface micromachining builds microstructures by deposition and etching structural layers over a substrate. This is different from Bulk micromachining, in which a silicon substrate wafer is selectively etched to produce structures.

A thin-film bulk acoustic resonator is a device consisting of a piezoelectric material manufactured by thin film methods between two conductive – typically metallic – electrodes and acoustically isolated from the surrounding medium. The operation is based on the piezoelectricity of the piezolayer between the electrodes.

Acoustic waves emitted by ultrasonics transducer crystals exhibit a property known as self-focusing. Note that this is distinct from the electronically controlled focusing employed in diagnostic ultrasound devices which employ arrays of transducers. The self-focusing effect exists even for a single crystal.

A hybrid silicon laser is a semiconductor laser fabricated from both silicon and group III-V semiconductor materials. The hybrid silicon laser was developed to address the lack of a silicon laser to enable fabrication of low-cost, mass-producible silicon optical devices. The hybrid approach takes advantage of the light-emitting properties of III-V semiconductor materials combined with the process maturity of silicon to fabricate electrically driven lasers on a silicon wafer that can be integrated with other silicon photonic devices.

D. Jackson Coleman is a professor of clinical ophthalmology at NewYork-Presbyterian Hospital at The Edward S. Harkness Eye Institute of Columbia University. He is the former John Milton McLean Professor of Ophthalmology and chairman emeritus at Weill Cornell Medical Center where he served as chairman from 1979 to 2006. His specialties are retinal diseases and ultrasound, working with patients at Columbia University Medical Center. Coleman is also engaged in research involving ultrasound, which he has pursued throughout his career with colleague Ronald Silverman in the Department of Ophthalmology at the Columbia University Medical Center.

<span class="mw-page-title-main">Ultrasonic transducer</span> Acoustic sensor

Ultrasonic transducers and ultrasonic sensors are devices that generate or sense ultrasound energy. They can be divided into three broad categories: transmitters, receivers and transceivers. Transmitters convert electrical signals into ultrasound, receivers convert ultrasound into electrical signals, and transceivers can both transmit and receive ultrasound.

<span class="mw-page-title-main">Radio-frequency microelectromechanical system</span>

A radio-frequency microelectromechanical system is a microelectromechanical system with electronic components comprising moving sub-millimeter-sized parts that provide radio-frequency (RF) functionality. RF functionality can be implemented using a variety of RF technologies. Besides RF MEMS technology, III-V compound semiconductor, ferrite, ferroelectric, silicon-based semiconductor, and vacuum tube technology are available to the RF designer. Each of the RF technologies offers a distinct trade-off between cost, frequency, gain, large-scale integration, lifetime, linearity, noise figure, packaging, power handling, power consumption, reliability, ruggedness, size, supply voltage, switching time and weight.

<span class="mw-page-title-main">Integrated passive devices</span>

Integrated passive devices (IPDs), also known as integrated passive components (IPCs) or embedded passive components (EPC), are electronic components where resistors (R), capacitors (C), inductors (L)/coils/chokes, microstriplines, impedance matching elements, baluns or any combinations of them are integrated in the same package or on the same substrate. Sometimes integrated passives can also be called as embedded passives, and still the difference between integrated and embedded passives is technically unclear. In both cases passives are realized in between dielectric layers or on the same substrate.

<span class="mw-page-title-main">Schlieren imaging</span> Method to visualize density variations in transparent media

Schlieren imaging is a method to visualize density variations in transparent media.

The wafer bond characterization is based on different methods and tests. Considered a high importance of the wafer are the successful bonded wafers without flaws. Those flaws can be caused by void formation in the interface due to unevenness or impurities. The bond connection is characterized for wafer bond development or quality assessment of fabricated wafers and sensors.

Microelectromechanical system oscillators are devices that generate highly stable reference frequencies used to sequence electronic systems, manage data transfer, define radio frequencies, and measure elapsed time. The core technologies used in MEMS oscillators have been in development since the mid-1960s, but have only been sufficiently advanced for commercial applications since 2006. MEMS oscillators incorporate MEMS resonators, which are microelectromechanical structures that define stable frequencies. MEMS clock generators are MEMS timing devices with multiple outputs for systems that need more than a single reference frequency. MEMS oscillators are a valid alternative to older, more established quartz crystal oscillators, offering better resilience against vibration and mechanical shock, and reliability with respect to temperature variation.

Piezoelectric Micromachined Ultrasonic Transducers (PMUT) are MEMS-based piezoelectric ultrasonic transducers. Unlike bulk piezoelectric transducers which use the thickness-mode motion of a plate of piezoelectric ceramic such as PZT or single-crystal PMN-PT, PMUT are based on the flexural motion of a thin membrane coupled with a thin piezoelectric film, such as PVDF. In comparison with bulk piezoelectric ultrasound transducers, PMUT can offer advantages such as increased bandwidth, flexible geometries, natural acoustic impedance match with water, reduced voltage requirements, mixing of different resonant frequencies and potential for integration with supporting electronic circuits especially for miniaturized high frequency applications.

Ultrasonic antifouling is a technology that uses high frequency sound (ultrasound) to prevent or reduce biofouling on underwater structures, surfaces, and medium. Ultrasound is just high frequency sound. Ultrasound has the same physical properties as human-audible sound. The method has two primary forms: sub-cavitation intensity and cavitation intensity. Sub-cavitation methods create high frequency vibrations, whilst cavitation methods cause more destructive microscopic pressure changes. Both methods inhibit or prevent biofouling by algae and other single-celled organisms.

A nanoelectromechanical (NEM) relay is an electrically actuatedswitch that is built on the nanometer scale using semiconductor fabrication techniques. They are designed to operate in replacement of, or in conjunction with, traditional semiconductor logic. While the mechanical nature of NEM relays makes them switch much slower than solid-state relays, they have many advantageous properties, such as zero current leakage and low power consumption, which make them potentially useful in next generation computing.

A piezoelectric microelectromechanical system (piezoMEMS) is a miniature or microscopic device that uses piezoelectricity to generate motion and carry out its tasks. It is a microelectromechanical system that takes advantage of an electrical potential that appears under mechanical stress. PiezoMEMS can be found in a variety of applications, such as switches, inkjet printer heads, sensors, micropumps, and energy harvesters.

Nazanin Bassiri-Gharb is a mechanical engineer in the field of micro and nano engineering and mechanics of materials. She is the Harris Saunders, Jr. Chair and Professor in the George W. Woodruff School of Mechanical Engineering at the Georgia Institute of Technology in Atlanta, Georgia. Bassiri-Gharb leads the Smart Materials, Advanced Research and Technology (SMART) Laboratory at Georgia Tech. Her research seeks to characterize and optimize the optical and electric response of interferometric modulator (IMOD) displays. She also investigates novel materials to improve reliability and processing of IMOD.

The Dick effect is an important limitation to frequency stability for modern atomic clocks such as atomic fountains and optical lattice clocks. It is an aliasing effect: High frequency noise in a required local oscillator (LO) is aliased (heterodyned) to near zero frequency by a periodic interrogation process that locks the frequency of the LO to that of the atoms. The noise mimics and adds to the clock's inherent statistical instability, which is determined by the number of atoms or photons available. In so doing, the effect degrades the stability of the atomic clock and places new and stringent demands on LO performance.

References

  1. "General Description and Advantages of CMUTs". Stanford University. Archived from the original on 20 July 2011. Retrieved 7 February 2011.
  2. Oralkan, O.; Ergun, A.S.; Johnson, J.A.; Karaman, M.; Demirci, U.; Kaviani, K.; Lee, T.H.; Khuri-Yakub, B.T. (2002). "Capacitive micromachined ultrasonic transducers: Next-generation arrays for acoustic imaging?" (PDF). IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 49 (11): 1596–1610. doi:10.1109/TUFFC.2002.1049742. PMID   12484483. S2CID   17896227. Archived from the original (PDF) on 18 March 2012. Retrieved 8 February 2011.
  3. 1 2 Ergun, AS; Huang, Y; Zhuang, X (2005). "Capacitive micromachined ultrasonic transducers: fabrication technology". IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 52 (12): 2242–58. doi:10.1109/tuffc.2005.1563267. PMID   16463490. S2CID   3155087.
  4. Yongli Huang; Ergun, A.S.; Haggstrom, E.; Badi, M.H.; Khuri-Yakub, B.T. (2003). "Fabricating capacitive micromachined ultrasonic transducers with wafer-bonding technology". Journal of Microelectromechanical Systems. 12 (2): 128–137. doi:10.1109/JMEMS.2003.809968. S2CID   73596830.
  5. Logan, A.; Yeow, J.T.W. (2009). "Fabricating capacitive micromachined ultrasonic transducers with a novel silicon-nitride-Based wafer bonding process". IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 56 (5): 1074–1084. doi:10.1109/TUFFC.2009.1141. PMID   19473926. S2CID   12058311.
  6. Midtbo, K.; Ronnekleiv, A.; Wang, D.T. (2006). "Fabrication and Characterization of CMUTs realized by Wafer Bonding". 2006 IEEE Ultrasonics Symposium. pp. 938–941. doi:10.1109/ULTSYM.2006.249. ISBN   1-4244-0201-8. S2CID   20519164.
  7. Park, K.K.; Lee, H.J.; Kupnik, M.; Oralkan, O.; Khuri-Yakub, B.T. (2008). "Fabricating capacitive micromachined ultrasonic transducers with direct wafer-bonding and LOCOS technology". 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems. pp. 339–342. doi:10.1109/MEMSYS.2008.4443662. ISBN   978-1-4244-1792-6. S2CID   9508355.
  8. Liu, Jessica; Oakley, Clyde; Shandas, Robin (2009). "Capacitive micromachined ultrasonic transducers using commercial multi-user MUMPs process: Capability and limitations". Ultrasonics. 49 (8): 765–773. doi:10.1016/j.ultras.2009.06.003. ISSN   0041-624X. PMC   2783530 . PMID   19640557.
  9. Olcum, Selim; Oguz, Kagan; Senlik, Muhammed N.; Yamaner, F. Yalcin; Bozkurt, Ayhan; Atalar, Abdullah; Koymen, Hayrettin (2009). "Wafer bonded capacitive micromachined underwater transducers". 2009 IEEE International Ultrasonics Symposium. pp. 976–979. doi:10.1109/ULTSYM.2009.5441699. hdl:11693/28638. ISBN   978-1-4244-4389-5. S2CID   7143784.
  10. Coppa, A.; Cianci, E.; Foglietti, V.; Caliano, G.; Pappalardo, M. (2007). "Building CMUTs for imaging applications from top to bottom". Microelectronic Engineering. 84 (5–8): 1312–1315. doi:10.1016/j.mee.2007.01.211.
  11. Caronti, Alessandro; Coppa, Andrea; Savoia, Alessandro; Longo, Cristina; Gatta, Philipp; Mauti, Barbara; Corbo, Antonio; Calabrese, Beatrice; Bollino, Giulio; Paz, Alejandro; Caliano, Giosue; Pappalardo, Massimo (2008). "Curvilinear capacitive micromachined ultrasonic transducer (CMUT) array fabricated using a reverse process". 2008 IEEE Ultrasonics Symposium. pp. 2092–2095. doi:10.1109/ULTSYM.2008.0517. ISBN   978-1-4244-2428-3. S2CID   6900919.
  12. Patent US7790490