Car controls are the components in automobiles and other powered road vehicles, such as trucks and buses, used for driving and parking.
While controls like steering wheels and pedals have existed since the invention of cars, other controls have developed and adapted to the demands of drivers. For example, manual transmissions became less common as technology relating to automatic transmissions became advanced.
Earlier versions of headlights and signal lights were fueled by acetylene or oil. Acetylene was preferred to oil, because its flame is resistant to both wind and rain. Acetylene headlights, which gave a strong green-tinted light, were popular until after World War I; even though the first electric headlights were introduced in 1898 (and those were battery-powered), it wasn't until high-wattage bulbs and more powerful car electrical generating systems were developed in the late 1910s that electric lighting systems entirely superseded acetylene.
The first automobiles were steered with a tiller sometimes on the left or right, sometimes in the centre. The steering wheel was first used when Alfred Vacheron competed in the 1894 Paris–Rouen motor race in a Panhard et Levassor. In 1898, steering wheels became a standard feature of Panhard et Levassor cars. They were introduced in the U.S. by Packard in 1899, and by 1908 were on most models. [1]
Power steering helps drivers steer by augmenting the driver's steering effort. Power steering has used hydraulics to reduce a driver's steering effort. However, hydraulic steering is being replaced by electric power steering, because it eliminates the hydraulic pump, and increases fuel efficiency. [2]
In modern cars the four-wheel braking system is controlled by a pedal to the left of the accelerator pedal.
There is usually also a parking brake which operates the rear brakes only (or less commonly, the front brakes only, as in the Saab 99 and in the Citroën Xantia). This has traditionally been operated by a lever between the front seats called a hand brake, but also appeared as a lever between the driver's seat and the door (as in the Porsche 911), a knob pulled away from the dash (as in the Volkswagen Transporter), a foot-operated pedal (as in the Nissan Leaf), and other less common arrangements. All of these controls pull on a spring-loaded cable and are held in place with a ratcheting mechanism until released.
In the 2000s, direct-acting electronic parking brakes controlled by a switch (as in the Volkswagen eGolf [3] ) are becoming more common, replacing cable-actuated mechanical systems.
In rallying there is often a hydraulic handbrake for the rear wheels, operated by a long, vertical lever extending to near the steering wheel. This is designed to facilitate handbrake turns rather than for parking, so lacks a ratcheting mechanism. [4]
The throttle, which controls fuel and air supply to the engine and is also known as the "accelerator" or "gas pedal", is normally the right-most floor pedal. It has a fail-safe design – a spring, which returns it to the idle position when not depressed by the driver.
Normally the throttle and brake are operated by the right foot, while the clutch is operated by the left foot. However, some drivers sometimes mistake the accelerator for the brake, leading to sudden unintended acceleration and causing 16,000 accidents per year in the US. [5] There are also drivers who intentionally practice left-foot braking.
Early cars had a hand lever to control the throttle, either directly, or by controlling an engine speed governor which in turn controlled both the throttle and timing. [6] In 1900 the Wilson-Pilcher car was introduced in Britain which had a hand controlled speed governor, and a foot throttle which could override the action of the governor. Unlike modern throttle pedals this could be raised to accelerate the car or depressed to slow it, "and thus quick accelerations or retardations can be effected" without interfering with the governed speed set using the hand control. [6] The combination of governed engine speed with foot throttle override is in many ways similar to a modern cruise control. In spite of this development, steering column mounted hand throttles remained common, especially in mass-produced cars such as the Ford Model T. [7] Later cars used both a foot pedal and a hand lever to set the minimum throttle. The 1918 Stutz Bearcat had a central throttle pedal with the clutch and brake to the right and left. [8] Modern cruise control was invented in 1948. [9]
Vehicles that generate power with an internal combustion engine (ICE) are generally equipped with a transmission or gearbox to change the speed-torque ratio and the direction of travel. This does not usually apply to electric vehicles because their motors can drive the vehicle both forward and backward from zero speed. In some four-wheel drive vehicles there is a gear lever that engages a low-ratio gearbox. Other levers may switch between two- and four-wheel drive and differential locks.
Some cars have a freewheel that disengages the driveshaft from the driven shaft. This happens when the driven shaft rotates faster than the driveshaft. For example, Saab used a freewheel system in their earlier vehicles, to let the engine disconnect from the transmission while coasting. This was a feature added because of the limited lubrication in the two-stroke engine. A petroil-lubricated two-stroke requires lubrication according to its speed, but provides this lubrication according to the amount of its throttle opening. Where the engine operates at high RPM and low throttle (such as when coasting down a long hill), the lubrication provided may be inadequate. With the freewheel, a coasting engine could reduce its speed to idling, thus requiring only the small lubrication available from the closed, coasting, throttle. Freewheeling can also be used to help reduce high exhaust gas temperatures in two stroke models caused by prolonged use of the throttle at higher RPM. [10]
Freewheeling was retained in the four-stroke variant, until the end of production and in the Saab 99 with the 1709 cc Triumph engine. A minor drawback to the freewheel, particularly for drivers unfamiliar with the Saab, is that it makes engine braking unavailable although it could be manually engaged or disengaged by a control in the foot-well. Fixed wheel engagement, using the foot, could be difficult, as it involved pulling a 'T handle' intended for manual operation. [10] Some cars, such as the Rover P4, include a manual switch to engage or disengage the freewheel. [11]
Manual transmission is also known as a manual gearbox, stick shift, standard, and stick. Most automobile manual transmissions have several gear ratios that are chosen by locking selected gear pairs to the output shaft inside the transmission. Manual transmissions feature a driver-operated clutch pedal and a hand-operated gear stick or shift lever, or, on a motorcycle; a hand-operated clutch lever, and a foot-operated gearshift lever. Historically, cars had a manual overdrive switch.
Semi-automatic transmissions are mechanically the same as a conventional manual transmission, but do not have a manually-operated clutch mechanism; instead facilitating the driver, by using automation system to control the clutch. These systems still require the driver's input and involvement for manually changing gear ratios, though, and will not change gear automatically for the driver.
The desire for driver convenience led to the widespread implementation of the now-popular hydraulic automatic transmission design in the 1940s, followed by the first mass-production continuously variable transmission (CVT), the Variomatic , in 1958. Automatic transmission with manumatic (manual) gear shifting controls started to appear on mass-production cars in the early-1990s, starting with Porsche's Tiptronic system. Later, the computer-controlled, single-clutch, automated manual transmission, pioneered by BMW and Ferrari, began appearing on mass-production automobiles in the mid-1990s; one example is Alfa Romeo's Selespeed , which is the same system used by Ferrari and BMW. The first mass-production dual-clutch transmission design was introduced with the 4th-generation Volkswagen Golf R32 in 2003, with the direct-shift gearbox .
Some automatic transmission vehicles have extra controls that modify the choices made by the transmission system. These controls depend on the engine and road speed. Automatic gear selectors generally have a straight pattern, beginning at the most forward position with park, and running through reverse, neutral, drive, and then to the lower gears.
Cars have controls for headlamps, fog lamps, turn signals, and other automotive lighting. Turn signals are activated by the driver to alert other drivers of their intent to turn or change lanes. [12] While the modern turn signal was patented in 1938, [13] electric turn-signal lights date back to 1907. [14]
As of 2013, [update] most countries require turn signals to be included on all vehicles driven on public roadways. The turn signal lever is usually activated by a horizontal lever protruding from the steering column.
Vehicles are generally equipped with a variety of instruments mounted on the dashboard to indicate driving parameters and the state of the mechanics. The placement of the instruments can vary. While they are usually mounted behind the steering wheel, they may also be mounted centrally below the windshield, or integrated into the center stack above the climate control and audio system. The standard gauges found on road vehicles include the following:
These gauges are supplemented by an assortment of warning lights that indicate the currently selected transmission gear mode, the generic check engine light, and the current status of various vehicle systems.
The layout and design of these instruments have evolved over the years by being implemented as digital readouts rather than the traditional analog dial-type indicators. Depending on the type of vehicle, more specialized instruments may be used such as a trip computer, fuel economy gauge, or battery level display.
Before the appearance of the starter motor, engines were started by various difficult and dangerous methods. These methods included: wind-up springs, gunpowder cylinders, and human-powered techniques such as a removable hand-crank. In 1896, the first electric starter was installed on an Arnold, [15] one of the first motor cars manufactured in the United Kingdom. Charles Kettering and Henry Leland later invented and filed U.S. patent 1,150,523 for the first electric starter in America in 1911. In 1912, the Cadillac Model Thirty became the first American car to have a starter installed.
Before Chrysler's 1949 innovation of the key-operated combination ignition-starter switch, [16] the starter was operated by the driver pressing a button that was mounted on the floor or dashboard. This type of control has now returned with the use of keyless entry. Early Chevrolet cars had the starter pedal to the right of the accelerator, with a secondary throttle control knob on the dashboard because it was difficult to operate the starter pedal and pump the gas pedal at the same time.
Some other historical engine controls, which are automated in modern passenger cars, were the choke valve, ignition timing, and spark arrestor. [17]
In the past, all cars had manual controls for starting and running the engine. Now, modern cars not only have automated controls, but they also have controls that are not directly used to drive the vehicle. These controls include air conditioning, navigation systems, on-board computers, in-car entertainment, windscreen wiper, and touchscreen panels.
These controls vary in scope and design between different types of cars. They may also be located and operated differently in other road vehicles such as motorcycles, where the throttle is controlled by a hand lever and the gear shift is operated by a pedal. Some types of vehicle controls are found in rail vehicles. For example, some trams and light rail vehicles like the PCC streetcar use automobile-style pedals to control the speed.
In Formula One auto racing, many vehicle parameters can be set by the driver during a race. Controls for these are mounted on the steering wheel, and can include controls for: brake balance, differential, ignition timing, regenerative brake, rev limiter, and others. [18]
Left-foot braking is the technique of using the left foot to operate the brake pedal in an automobile, leaving the right foot dedicated to the throttle pedal. It contrasts with the practice of using the left foot to operate the clutch pedal, leaving the right foot to share the duties of controlling both brake and gas pedals.
Cruise control is a system that automatically controls the speed of an automobile. The system is a servomechanism that takes over the car's throttle to maintain a steady speed set by the driver.
An automatic transmission is a multi-speed transmission used in motor vehicles that does not require any input from the driver to change forward gears under normal driving conditions. Vehicles with internal combustion engines, unlike electric vehicles, require the engine to operate in a narrow range of rates of rotation, requiring a gearbox, operated manually or automatically, to drive the wheels over a wide range of speeds.
A manual transmission (MT), also known as manual gearbox, standard transmission, or stick shift, is a multi-speed motor vehicle transmission system where gear changes require the driver to manually select the gears by operating a gear stick and clutch.
In mechanical or automotive engineering, a freewheel or overrunning clutch is a device in a transmission that disengages the driveshaft from the driven shaft when the driven shaft rotates faster than the driveshaft. An overdrive is sometimes mistakenly called a freewheel, but is otherwise unrelated.
A semi-automatic transmission is a multiple-speed transmission where part of its operation is automated, but the driver's input is still required to launch the vehicle from a standstill and to manually change gears. Semi-automatic transmissions were almost exclusively used in motorcycles and are based on conventional manual transmissions or sequential manual transmissions, but use an automatic clutch system. But some semi-automatic transmissions have also been based on standard hydraulic automatic transmissions with torque converters and planetary gearsets.
Engine braking occurs when the retarding forces within an internal combustion engine are used to slow down a motor vehicle, as opposed to using additional external braking mechanisms such as friction brakes or magnetic brakes.
Drive by wire or DbW technology in the automotive industry is the use of electronic or electro-mechanical systems in place of mechanical linkages that control driving functions. The concept is similar to fly-by-wire in the aviation industry. Drive-by-wire may refer to just the propulsion of the vehicle through electronic throttle control, or it may refer to electronic control over propulsion as well as steering and braking, which separately are known as steer by wire and brake by wire, along with electronic control over other vehicle driving functions.
A direct-shift gearbox is an electronically controlled, dual-clutch, multiple-shaft, automatic gearbox, in either a transaxle or traditional transmission layout, with automated clutch operation, and with fully-automatic or semi-manual gear selection. The first dual-clutch transmissions were derived from Porsche in-house development for the Porsche 962 in the 1980s.
The Messerschmitt KR175 microcar (1953–1955) was the first vehicle built by Messerschmitt under its 1952 agreement with Fritz Fend. In concept, although not in actual design, it was, in principle, a development of the Fend Flitzer invalid carriage. Approximately 15,000 were built before it was replaced by the Messerschmitt KR200 in 1955.
A transmission control unit (TCU), also known as a transmission control module (TCM), or a gearbox control unit (GCU), is a type of automotive ECU that is used to control electronic automatic transmissions. Similar systems are used in conjunction with various semi-automatic transmissions, purely for clutch automation and actuation. A TCU in a modern automatic transmission generally uses sensors from the vehicle, as well as data provided by the engine control unit (ECU), to calculate how and when to change gears in the vehicle for optimum performance, fuel economy and shift quality.
A gear stick, gear lever, gearshift or shifter, more formally known as a transmission lever, is a metal lever attached to the transmission of an automobile. The term gear stick mostly refers to the shift lever of a manual transmission, while in an automatic transmission, a similar lever is known as a gear selector. A gear stick will normally be used to change gear whilst depressing the clutch pedal with the left foot to disengage the engine from the drivetrain and wheels. Automatic transmission vehicles, including hydraulic automatic transmissions, automated manual and older semi-automatic transmissions, like VW Autostick, and those with continuously variable transmissions, do not require a physical clutch pedal.
Clutch control refers to the act of controlling the speed of a vehicle with a manual transmission by partially engaging the clutch plate, using the clutch pedal instead of the accelerator pedal. The purpose of a clutch is in part to allow such control; in particular, a clutch provides transfer of torque between shafts spinning at different speeds. In the extreme, clutch control is used in performance driving, such as starting from a dead stop with the engine producing maximum torque at high RPM.
A line lock is a device that allows the front brakes to lock independently of the rear brakes via a switch. The device is an electric solenoid that controls a valve which allows the brakes to be controlled individually. This allows the front brakes to be locked and the rear brakes to be open, and allows the driver to spin the rear wheels without wasting the rear brakes. This method is referred to as line lock and is popular among enthusiasts who like to do burnouts.
A motorcycle transmission is a transmission created specifically for motorcycle applications. They may also be found in use on other light vehicles such as motor tricycles and quadbikes, go-karts, offroad buggies, auto rickshaws, mowers, and other utility vehicles, microcars, and even some superlight racing cars.
The Vauxhall 23-60 is a four or five-seater touring car manufactured by Vauxhall of Luton that was announced in July 1922. The 23-60's standard tourer Kington body was described as "preserving that greyhound look so characteristic of the Vauxhall car". It shared many parts with Vauxhall's much more powerful 30-98.
Their new Daimler 22 horsepower full-size luxury car was first displayed by Daimler in April 1902 at The Automobile Club’s Exhibition in London's Agricultural Hall. Daimler had elected to drop their multiple old low powered designs and restrict themselves to this 22 horsepower and a pair of 9 or 12 horsepower cars to the same design as the 22 but more lightly constructed. The King’s not quite finished new Daimler 22 was reported to be the chief attraction of the show.
Gliding is an energy-efficient driving mode achieved by turning off the internal combustion engine while the vehicle is still moving in order to save fuel. This is differentiated from coasting, which means running the vehicle in idle mode by disengaging the engine from the wheels, either by disengaging the clutch or setting the transmission or gearbox to neutral position. Gliding and coasting use the accelerated kinetic energy reserve stored in the vehicles mass, i.e. inertia, to keep the vehicle moving. This energy, however, is being lost due to forces that resist movement, such as air-drag, rolling resistance and gravity. The functionality, being an integral concept of hybrid electric vehicles, is performed automatically by the engine controller. For vehicles with a conventional internal combustion engine, coasting can be performed manually; gliding requires having a gear box. Manual gliding or coasting is illegal in some states. An extra button to stop the engine was shown in 1979 on International Motor Show Germany, but never became a feature in mass production of any vehicle. In 1980 research was made on the IRVW II. A so-called eClutch uses an actuator to disengage the clutch when the driver releases the accelerator.
This glossary of automotive terms is a list of definitions of terms and concepts related to automobiles, including their parts, operation, and manufacture, as well as automotive engineering, auto repair, and the automotive industry in general. For more specific terminology regarding the design and classification of various automobile styles, see Glossary of automotive design; for terms related to transportation by road, see Glossary of road transport terms; for competitive auto racing, see Glossary of motorsport terms.
Pedal error crashes can occur when the driver steps on the accelerator when intending to apply the brake; the driver's foot slips off the edge of the brake onto the accelerator