Fuel gauge

Last updated

In automotive and aerospace engineering, a fuel gauge is an instrument used to indicate the amount of fuel in a fuel tank. [1] In electrical engineering, the term is used for ICs determining the current State of Charge of accumulators.

Contents

Motor vehicles

An analog fuel gauge in a 2016 Toyota Corolla featuring a "Moylan Arrow" indicating a fuel filler on the left side of the vehicle. Fuel gauge (Toyota Corolla).jpg
An analog fuel gauge in a 2016 Toyota Corolla featuring a "Moylan Arrow" indicating a fuel filler on the left side of the vehicle.

As used in vehicles, the gauge consists of two parts:

The sending unit usually uses a float connected to a potentiometer, typically printed ink design in a modern automobile. As the tank empties, the float drops and slides a moving contact along the resistor, increasing its resistance. [2] In addition, when the resistance is at a certain point, it will also turn on a "low fuel" light on some vehicles. [3]

Meanwhile, the indicator unit (usually mounted on the dashboard) is measuring and displaying the amount of electric current flowing through the sending unit. When the tank level is high and maximum current is flowing, the needle points to "F" indicating a full tank. When the tank is empty and the least current is flowing, the needle points to "E" indicating an empty tank; some vehicles use the indicators "1" (for full) and "0" or "R" (for empty) instead. [4]

The digital fuel gauge in a 2018 Mazda 3 showing a nearly-empty tank along with a distance to empty display. Mazda 3 Fuel Gauge Showing Empty.jpg
The digital fuel gauge in a 2018 Mazda 3 showing a nearly-empty tank along with a distance to empty display.
Typical old-style fuel gauge on a 50 ccm chinese-made scooter from 2008, with the internationally used pictogram of a gas pump Fuel tank pictogram on 50 ccm scooter.jpeg
Typical old-style fuel gauge on a 50 ccm chinese-made scooter from 2008, with the internationally used pictogram of a gas pump

The system can be fail-safe. If an electrical fault opens, the electrical circuit causes the indicator to show the tank as being empty (theoretically provoking the driver to refill the tank) rather than full (which would allow the driver to run out of fuel with no prior notification). Corrosion or wear of the potentiometer will provide erroneous readings of fuel level. However, this system has a potential risk associated with it. An electric current is sent through the variable resistor to which a float is connected, so that the value of resistance depends on the fuel level. In most automotive fuel gauges such resistors are on the inward side of the gauge, i.e., inside the fuel tank. Sending current through such a resistor has a fire hazard and an explosion risk associated with it. These resistance sensors are also showing an increased failure rate with the incremental additions of alcohol in automotive gasoline fuel. Alcohol increases the corrosion rate at the potentiometer, as it is capable of carrying current like water. Potentiometer applications for alcohol fuel use a pulse-and-hold methodology, with a periodic signal being sent to determine fuel level decreasing the corrosion potential. Therefore, demand for another safer, non-contact method for fuel level is desired.

Moylan arrow

Since the early 1990s, many fuel gauges have included an icon with a fuel pump and an arrow, indicating the side of the vehicle on which the fuel filler is located. [5] [6] The use of the icon and arrow was invented in 1986 by Jim Moylan, a designer for Ford Motor Company. After he proposed the idea in April 1986, [7] the 1989 Ford Escort and Mercury Tracer were the first vehicles to see it implemented. Other automotive companies noticed the addition and began to incorporate it into their own fuel gauges. [5] [8]

Aircraft

Magnetoresistance type fuel level sensors, now becoming common in small aircraft applications, offer a potential alternative for automotive use. These fuel level sensors work similar to the potentiometer example, however a sealed detector at the float pivot determines the angular position of a magnet pair at the pivot end of the float arm. These are highly accurate, and the electronics are completely outside the fuel. The non-contact nature of these sensors address the fire and explosion hazard, and also the issues related to any fuel combinations or additives to gasoline or to any alcohol fuel mixtures. Magneto resistive sensors are suitable for all fuel or fluid combinations, including LPG and LNG. The fuel level output for these senders can be ratiometric voltage or preferable CAN bus digital. These sensors also fail-safe in that they either provide a level output or nothing.

Systems that measure large fuel tanks (including underground storage tanks) may use the same electro-mechanical principle or may make use of a pressure sensor, [9] sometimes connected to a mercury manometer.

Many large transport aircraft use a different fuel gauge design principle. An aircraft may use a number (around 30 on an A320) of low voltage tubular capacitor probes where the fuel becomes the dielectric. At different fuel levels, different values of capacitance are measured and therefore the level of fuel can be determined. In early designs, the profiles and values of individual probes were chosen to compensate for fuel tank shape and aircraft pitch and roll attitudes. In more modern aircraft, the probes tend to be linear (capacitance proportional to fuel height) and the fuel computer works out how much fuel there is (slightly different on different manufacturers). This has the advantage that a faulty probe may be identified and eliminated from the fuel calculations. In total this system can be more than 99% accurate. Since most commercial aircraft only take on board fuel necessary for the intended flight (with appropriate safety margins), the system allows the fuel load to be preselected, causing the fuel delivery to be shut off when the intended load has been taken on board.

Fuel Gauge ICs

In electronics there are different ICs available, [10] [11] [12] which control the current State of Charge of accumulators. These devices are also called "Fuel Gauge".

See also

Notes

  1. Erjavec, Jack (2005). Automotive Technology. ISBN   1-4018-4831-1.
  2. "How Fuel Gauges Work". 4 April 2001.
  3. William Harry Crouse; Donald L. Anglin (March 1981). Automotive fuel, lubricating, and cooling systems. Gregg Division, McGraw-Hill. pp. 35–36, 155. ISBN   978-0-07-014862-8.
  4. James E. Duffy (1987). Auto Fuel Systems . Goodheart-Willcox Company. pp.  126–128. ISBN   978-0-87006-623-8.
  5. 1 2 Do You Need to Warm Up Your Car? Plus, a Teeny, Glorious Car Hack", Every Little Thing Podcast, October 8, 2018
  6. Jason Torchinsky, The Inventor of the Little Arrow that Tells You What Side the Fuel Filler Is On Has Finally Been Found, Jalopnik.com, 8 October 2018
  7. Farley, Jim. "June 4, 2002 tweet". Twitter. Retrieved 22 February 2023.
  8. Torchinsky, Jason (8 October 2018). "The Inventor of the Little Arrow that Tells You What Side the Fuel Filler Is On Has Finally Been Found". Jalopnik. Retrieved 22 February 2023.
  9. The Aeronautical Journal. Royal Aeronautical Society. 1976. p. 331.
  10. "Battery fuel gauges | Products | TI.com".
  11. "Battery Fuel Gauge - Gas Gauge | Maxim Integrated".
  12. "Battery Monitoring - Fuel gauge ICs - STMicroelectronics".

Related Research Articles

<span class="mw-page-title-main">Resistor</span> Passive electrical component providing electrical resistance

A resistor is a passive two-terminal electrical component that implements electrical resistance as a circuit element. In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active elements, and terminate transmission lines, among other uses. High-power resistors that can dissipate many watts of electrical power as heat may be used as part of motor controls, in power distribution systems, or as test loads for generators. Fixed resistors have resistances that only change slightly with temperature, time or operating voltage. Variable resistors can be used to adjust circuit elements, or as sensing devices for heat, light, humidity, force, or chemical activity.

<span class="mw-page-title-main">Potentiometer</span> Type of resistor, usually with three terminals

A potentiometer is a three-terminal resistor with a sliding or rotating contact that forms an adjustable voltage divider. If only two terminals are used, one end and the wiper, it acts as a variable resistor or rheostat.

A transducer is a device that converts energy from one form to another. Usually a transducer converts a signal in one form of energy to a signal in another. Transducers are often employed at the boundaries of automation, measurement, and control systems, where electrical signals are converted to and from other physical quantities. The process of converting one form of energy to another is known as transduction.

<span class="mw-page-title-main">Voltage divider</span> Linear circuit that produces an output voltage that is a fraction of its input voltage

In electronics, a voltage divider (also known as a potential divider) is a passive linear circuit that produces an output voltage (Vout) that is a fraction of its input voltage (Vin). Voltage division is the result of distributing the input voltage among the components of the divider. A simple example of a voltage divider is two resistors connected in series, with the input voltage applied across the resistor pair and the output voltage emerging from the connection between them.

<span class="mw-page-title-main">Strain gauge</span> Electronic component used to measure strain

A strain gauge is a device used to measure strain on an object. Invented by Edward E. Simmons and Arthur C. Ruge in 1938, the most common type of strain gauge consists of an insulating flexible backing which supports a metallic foil pattern. The gauge is attached to the object by a suitable adhesive, such as cyanoacrylate. As the object is deformed, the foil is deformed, causing its electrical resistance to change. This resistance change, usually measured using a Wheatstone bridge, is related to the strain by the quantity known as the gauge factor.

An oxygen sensor (or lambda sensor, where lambda refers to air–fuel equivalence ratio, usually denoted by λ) or probe or sond, is an electronic device that measures the proportion of oxygen (O2) in the gas or liquid being analysed.

<span class="mw-page-title-main">Fuel tank</span> Safe container for flammable fluids, e.g., for a vehicle or oil heater

A fuel tank is a safe container for flammable fluids, often gasoline or diesel fuel. Though any storage tank for fuel may be so called, the term is typically applied to part of an engine system in which the fuel is stored and propelled or released into an engine. Fuel tanks range in size and complexity from the small plastic tank of a butane lighter to the multi-chambered cryogenic Space Shuttle external tank.

<span class="mw-page-title-main">Electronic throttle control</span>

Electronic throttle control (ETC) is an automobile technology which electronically "connects" the accelerator pedal to the throttle, replacing a mechanical linkage. A typical ETC system consists of three major components: (i) an accelerator pedal module, (ii) a throttle valve that can be opened and closed by an electric motor, and (iii) a powertrain or engine control module. The ECM is a type of electronic control unit (ECU), which is an embedded system that employs software to determine the required throttle position by calculations from data measured by other sensors, including the accelerator pedal position sensors, engine speed sensor, vehicle speed sensor, and cruise control switches. The electric motor is then used to open the throttle valve to the desired angle via a closed-loop control algorithm within the ECM.

Vapor lock is a problem caused by liquid fuel changing state to gas while still in the fuel delivery system of gasoline-fueled internal combustion engines. This disrupts the operation of the fuel pump, causing loss of feed pressure to the carburetor or fuel injection system, resulting in transient loss of power or complete stalling. Restarting the engine from this state may be difficult.

<span class="mw-page-title-main">Mass flow sensor</span>

A mass (air) flow sensor (MAF) is a sensor used to determine the mass flow rate of air entering a fuel-injected internal combustion engine.

<span class="mw-page-title-main">Autogas</span> Liquefied petroleum gas when it is used as a fuel in internal combustion engines

Autogas or LPG is liquefied petroleum gas (LPG) used as a fuel in internal combustion engines in vehicles as well as in stationary applications such as generators. It is a mixture of propane and butane.

<span class="mw-page-title-main">Alcohol fuel</span>

Various alcohols are used as fuel for internal combustion engines. The first four aliphatic alcohols are of interest as fuels because they can be synthesized chemically or biologically, and they have characteristics which allow them to be used in internal combustion engines. The general chemical formula for alcohol fuel is CnH2n+1OH.

<span class="mw-page-title-main">Tell-tale (automotive)</span> Light that indicates malfunction of a system

A tell-tale, sometimes called an idiot light or warning light, is an indicator of malfunction or operation of a system, indicated by a binary (on/off) illuminated light, symbol or text legend.

Level sensors detect the level of liquids and other fluids and fluidized solids, including slurries, granular materials, and powders that exhibit an upper free surface. Substances that flow become essentially horizontal in their containers because of gravity whereas most bulk solids pile at an angle of repose to a peak. The substance to be measured can be inside a container or can be in its natural form. The level measurement can be either continuous or point values. Continuous level sensors measure level within a specified range and determine the exact amount of substance in a certain place, while point-level sensors only indicate whether the substance is above or below the sensing point. Generally the latter detect levels that are excessively high or low.

<span class="mw-page-title-main">Float switch</span>

A float switch is a type of level sensor, a device used to detect the level of liquid within a tank. The switch may be used to control a pump, as an indicator, an alarm, or to control other devices.

<span class="mw-page-title-main">Sight glass</span>

A sight glass or water gauge is a type of level sensor, a transparent tube through which the operator of a tank or boiler can observe the level of liquid contained within.

An aircraft fuel system allows the crew to pump, manage, and deliver aviation fuel to the propulsion system and auxiliary power unit (APU) of an aircraft. Fuel systems differ greatly due to different performance of the aircraft in which they are installed. A single-engine piston aircraft has a simple fuel system; a tanker, in addition to managing its own fuel, can also provide fuel to other aircraft.

<span class="mw-page-title-main">Float (liquid level)</span>

Liquid level floats, also known as float balls, are spherical, cylindrical, oblong or similarly shaped objects, made from either rigid or flexible material, that are buoyant in water and other liquids. They are non-electrical hardware frequently used as visual sight-indicators for surface demarcation and level measurement. They may also be incorporated into switch mechanisms or translucent fluid-tubes as a component in monitoring or controlling liquid level.