Carbomethoxymethylenetriphenylphosphorane

Last updated
Carbomethoxymethylene­triphenylphosphorane
Carbomethoxymethylenetriphenylphosphorane.svg
Names
Preferred IUPAC name
Methyl (triphenyl-λ5-phosphanylidene)acetate
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
EC Number
  • 220-018-4
PubChem CID
UNII
  • InChI=1S/C21H19O2P/c1-23-21(22)17-24(18-11-5-2-6-12-18,19-13-7-3-8-14-19)20-15-9-4-10-16-20/h2-17H,1H3
    Key: NTNUDYROPUKXNA-UHFFFAOYSA-N
  • COC(=O)C=P(C1=CC=CC=C1)(C2=CC=CC=C2)C3=CC=CC=C3
Hazards
GHS labelling:
GHS-pictogram-exclam.svg GHS-pictogram-skull.svg
Danger
H301, H315, H319, H335
P261, P264, P270, P271, P280, P302+P352, P304+P340, P305+P351+P338, P321, P330, P362+P364, P403+P233, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Carbomethoxymethylenetriphenylphosphorane is a chemical compound used in organic syntheses. It contains a phosphorus atom bound to three phenyl groups, and doubly bound to the alpha position of methyl acetate. It undergoes a Wittig reaction. [1] It is used in the Vitamin B12 total synthesis.

Contents

Production

Carbomethoxymethylenetriphenylphosphorane can be made via a multistep reaction using bromoacetic acid, dicyclohexylcarbodiimide, and triphenylphosphine. This makes a phosphonium salt, which is converted to the final product by sodium carbonate in water. [1]

Reactions

Carbomethoxymethylenetriphenylphosphorane reacts with aldehydes to give a two carbon atom extension. The carbomethoxymethylene group replaces the oxygen of the aldehyde to give a trans- double bond. [1]

Related Research Articles

<span class="mw-page-title-main">Alkene</span> Hydrocarbon compound containing one or more C=C bonds

In organic chemistry, an alkene, or olefin, is a hydrocarbon containing a carbon–carbon double bond. The double bond may be internal or in the terminal position. Terminal alkenes are also known as α-olefins.

An ylide or ylid is a neutral dipolar molecule containing a formally negatively charged atom (usually a carbanion) directly attached to a heteroatom with a formal positive charge (usually nitrogen, phosphorus or sulfur), and in which both atoms have full octets of electrons. The result can be viewed as a structure in which two adjacent atoms are connected by both a covalent and an ionic bond; normally written X+–Y. Ylides are thus 1,2-dipolar compounds, and a subclass of zwitterions. They appear in organic chemistry as reagents or reactive intermediates.

A diol is a chemical compound containing two hydroxyl groups. An aliphatic diol may also be called a glycol. This pairing of functional groups is pervasive, and many subcategories have been identified. They are used as protecting groups of carbonyl groups, making them essential in synthesis of organic chemistry.

<span class="mw-page-title-main">Imine</span> Organic compound or functional group containing a C=N bond

In organic chemistry, an imine is a functional group or organic compound containing a carbon–nitrogen double bond. The nitrogen atom can be attached to a hydrogen or an organic group (R). The carbon atom has two additional single bonds. Imines are common in synthetic and naturally occurring compounds and they participate in many reactions.

The Cannizzaro reaction, named after its discoverer Stanislao Cannizzaro, is a chemical reaction which involves the base-induced disproportionation of two molecules of a non-enolizable aldehyde to give a primary alcohol and a carboxylic acid.

The Wittig reaction or Wittig olefination is a chemical reaction of an aldehyde or ketone with a triphenyl phosphonium ylide called a Wittig reagent. Wittig reactions are most commonly used to convert aldehydes and ketones to alkenes. Most often, the Wittig reaction is used to introduce a methylene group using methylenetriphenylphosphorane (Ph3P=CH2). Using this reagent, even a sterically hindered ketone such as camphor can be converted to its methylene derivative.

<span class="mw-page-title-main">Peterson olefination</span> Chemical reaction

The Peterson olefination is the chemical reaction of α-silyl carbanions with ketones to form a β-hydroxysilane (2) which eliminates to form alkenes (3).

<span class="mw-page-title-main">Johnson–Corey–Chaykovsky reaction</span> Chemical reaction in organic chemistry

The Johnson–Corey–Chaykovsky reaction is a chemical reaction used in organic chemistry for the synthesis of epoxides, aziridines, and cyclopropanes. It was discovered in 1961 by A. William Johnson and developed significantly by E. J. Corey and Michael Chaykovsky. The reaction involves addition of a sulfur ylide to a ketone, aldehyde, imine, or enone to produce the corresponding 3-membered ring. The reaction is diastereoselective favoring trans substitution in the product regardless of the initial stereochemistry. The synthesis of epoxides via this method serves as an important retrosynthetic alternative to the traditional epoxidation reactions of olefins.

<span class="mw-page-title-main">2,3-sigmatropic rearrangement</span> Class of chemical reaction

2,3-Sigmatropic rearrangements are a type of sigmatropic rearrangements and can be classified into two types. Rearrangements of allylic sulfoxides, amine oxides, selenoxides are neutral. Rearrangements of carbanions of allyl ethers are anionic. The general scheme for this kind of rearrangement is:

The Horner–Wadsworth–Emmons (HWE) reaction is a chemical reaction used in organic chemistry of stabilized phosphonate carbanions with aldehydes to produce predominantly E-alkenes.

<span class="mw-page-title-main">Prins reaction</span> Chemical reaction involving organic compounds

The Prins reaction is an organic reaction consisting of an electrophilic addition of an aldehyde or ketone to an alkene or alkyne followed by capture of a nucleophile or elimination of an H+ ion. The outcome of the reaction depends on reaction conditions. With water and a protic acid such as sulfuric acid as the reaction medium and formaldehyde the reaction product is a 1,3-diol (3). When water is absent, the cationic intermediate loses a proton to give an allylic alcohol (4). With an excess of formaldehyde and a low reaction temperature the reaction product is a dioxane (5). When water is replaced by acetic acid the corresponding esters are formed.

<span class="mw-page-title-main">Tebbe's reagent</span> Chemical compound

Tebbe's reagent is the organometallic compound with the formula (C5H5)2TiCH2ClAl(CH3)2. It is used in the methylidenation of carbonyl compounds, that is it converts organic compounds containing the R2C=O group into the related R2C=CH2 derivative. It is a red solid that is pyrophoric in the air, and thus is typically handled with air-free techniques. It was originally synthesized by Fred Tebbe at DuPont Central Research.

<span class="mw-page-title-main">Methoxymethylenetriphenylphosphorane</span> Chemical compound

Methoxymethylenetriphenylphosphorane is a Wittig reagent used for the homologization of aldehydes, and ketones to extended aldehydes, a organic reaction first reported in 1958. The reagent is generally prepared and used in situ. It has blood-red color, indicative of destabilized ylides.

The Julia olefination (also known as the Julia–Lythgoe olefination) is the chemical reaction used in organic chemistry of phenyl sulfones (1) with aldehydes (or ketones) to give alkenes (olefins)(3) after alcohol functionalization and reductive elimination using sodium amalgam or SmI2. The reaction is named after the French chemist Marc Julia.

<span class="mw-page-title-main">Sodium cyanoborohydride</span> Chemical compound

Sodium cyanoborohydride is a chemical compound with the formula Na[BH3(CN)]. It is a colourless salt used in organic synthesis for chemical reduction including that of imines and carbonyls. Sodium cyanoborohydride is a milder reductant than other conventional reducing agents.

In organic chemistry, a homologation reaction, also known as homologization, is any chemical reaction that converts the reactant into the next member of the homologous series. A homologous series is a group of compounds that differ by a constant unit, generally a methylene group. The reactants undergo a homologation when the number of a repeated structural unit in the molecules is increased. The most common homologation reactions increase the number of methylene units in saturated chain within the molecule. For example, the reaction of aldehydes or ketones with diazomethane or methoxymethylenetriphenylphosphine to give the next homologue in the series.

<span class="mw-page-title-main">Takai olefination</span>

Takai olefination in organic chemistry describes the organic reaction of an aldehyde with a diorganochromium compound to form an alkene. It is a name reaction, named for Kazuhiko Takai, who first reported it in 1986. In the original reaction, the organochromium species is generated from iodoform or bromoform and an excess of chromium(II) chloride and the product is a vinyl halide. One main advantage of this reaction is the E-configuration of the double bond that is formed. According to the original report, existing alternatives such as the Wittig reaction only gave mixtures.

<span class="mw-page-title-main">Methylenetriphenylphosphorane</span> Chemical compound

Methylenetriphenylphosphorane is an organophosphorus compound with the formula Ph3PCH2. It is the parent member of the phosphorus ylides, popularly known as Wittig reagents. It is a highly polar, highly basic species.

William Clark Still is an American organic chemist. As a distinguished professor at Columbia University, Clark Still made significant contributions to the field of organic chemistry, particularly in the areas of natural product synthesis, reaction development, conformational analysis, macrocyclic stereocontrol, and computational chemistry. Still and coworkers also developed the purification technique known as flash column chromatography which is widely used for the purification of organic compounds.

In organic chemistry, methylenation is a chemical reaction that inserts a methylene group into a chemical compound:

References

  1. 1 2 3 Keck, Gary E.; Boden, Eugene P.; Mabury, Scott A. (March 1985). "A useful Wittig reagent for the stereoselective synthesis of trans-.alpha.,.beta.-unsaturated thiol esters". The Journal of Organic Chemistry. 50 (5): 709–710. doi:10.1021/jo00205a036.