Carrier frequency offset (CFO) is one of many non-ideal conditions that may affect in baseband receiver design. In designing a baseband receiver, we should notice not only the degradation invoked by non-ideal channel and noise, we should also regard RF and analog parts as the main consideration. Those non-idealities include sampling clock offset, IQ imbalance, power amplifier, phase noise and carrier frequency offset nonlinearity.
Carrier frequency offset often occurs when the local oscillator signal for down-conversion in the receiver does not synchronize with the carrier signal contained in the received signal. This phenomenon can be attributed to two important factors: frequency mismatch in the transmitter and the receiver oscillators; and the Doppler effect as the transmitter or the receiver is moving.
When this occurs, the received signal will be shifted in frequency. For an OFDM system, the orthogonality among sub carriers is maintained only if the receiver uses a local oscillation signal that is synchronous with the carrier signal contained in the received signal. Otherwise, mismatch in carrier frequency can result in inter-carrier interference (ICI). The oscillators in the transmitter and the receiver can never be oscillating at identical frequency. Hence, carrier frequency offset always exists even if there is no Doppler effect.
In a standard-compliant communication system, such as the IEEE 802.11 WLAN the oscillator precision tolerance is specified to be less than ±20 ppm, so that CFO is in the range from - 40 ppm to +40 ppm.
If the TX oscillator runs at a frequency that is 20 ppm above the nominal frequency and if the RX oscillator is running at 20 ppm below, then the received baseband signal will have a CFO of 40 ppm. With a carrier frequency of 5.2 GHz in this standard, the CFO is up to ±208 kHz. In addition, if the transmitter or the receiver is moving, the Doppler effect adds some hundreds of hertz in frequency spreading.
Compared to the CFO resulting from the oscillator mismatch, the Doppler effect in this case is relatively minor.
Given a carrier frequency offset,Δ, the received continuous-time signal will be rotated by a constant frequency and is in the form of
The carrier frequency offset can first be normalized with respect to the sub carrier spacing ( and then decomposed into the integral component and fractional component , that is, and . The received frequency-domain signal then becomes
The second term of the equation denotes the ICI, namely signals from other subcarriers that interfere with the desired subcarrier signal. Also note that is the channel noise component. The fractional carrier frequency offset, , results in attenuation in magnitude, phase shift, and ICI, while the integer carrier frequency offset, , causes index shift as well as phase shift in the received frequency-domain signals. Note that the phase shift is identical in every subcarrier and is also proportional to the symbol index .
An estimate of the CFO, if within a certain limit, can be obtained simultaneously when the coarse symbol timing is acquired by the algorithms mentioned earlier. The ML CFO estimator is given by [1]
Note that the phase can only be resolved in , and the above formula estimates only the part of the CFO that is within . If , then , the part of the CFO that is within plus and minus half the subcarrier spacing, also known as the fractional CFO. In the case in which , frequency ambiguity occurs, and the total CFO must be resolved by additional integer CFO estimation.
If the preamble has U identical repetitions, where , then another best linear unbiased estimator (BLUE) exploiting the correlation of the repeated segments is possible. Assume that there are R samples in a segment, so, in total, samples are available. The BLUE estimation algorithm starts with computing several linear auto-correlation functions with samples of delay,
Then the phase differences between all pairs of auto-correlation functions with delay difference are computed,
where denotes a modulo- operation and is a design parameter less than . Note that each represents an estimate of the CFO, scaled by a constant. The smaller the constant , the better accuracy it achieves. To gain an effective CFO estimate, the BLUE estimator uses a weighted average of all and computes
where
The optimal value for achieving the minimal variance of is . The range of estimated carrier frequency offset is .
With some modification, this estimator can also be applied to preambles consisting of several repeated segments with specific sign changes. With proper acquired symbol timing, the received segments of the preamble are multiplied by their respective signs, and then the same method as the BLUE estimator can be applied.
In the IEEE 802.16e OFDM mode standard, the oscillator deviation is within ±8 ppm. With the highest possible carrier frequency of 10.68 GHz, the maximum CFO is about ± 171 kHz when the transmitter LO and the receiver LO both have the largest yet opposite-sign frequency deviations, which is also equivalent to ± 1 1 sub carrier spacing . In the 6 MHz DVB-T system, assuming that the oscillator deviation is within ±20 ppm and the carrier frequency is around 800 MHz, the maximum CFO can be up to ±38 subcarrier spacing in the 8K transmission mode. From the previous discussion, it is clear that the estimated CFO obtained simultaneously in the coarse symbol boundary detection has ambiguity in frequency. In the following, algorithms for resolving such frequency ambiguity in the estimated carrier frequency offset will be presented.
In the 802.16e OFDM mode, the initial estimated CFO is within . Besides this estimation, additional frequency offset of , , or , is possible given a CFO range of . In order to estimate this additional integer CFO, a matched filter matching the fractional CFO-compensated received signal against the modulated long preamble waveforms can be used. The coefficients of the matched filter are the complex conjugate of the long preamble and they are modulated by a sinusoidal wave whose frequency is a possible integer CFO mentioned above. The output of the matched filter will have a maximum peak value if its coefficients are modulated by the carrier with the correct integer CFO. It is possible to deploy one such matched filter for each possible integer CFO. In this case, seven matched filters are needed. However, we can use only one set of matched filter hardware that handles different integer CFOs sequentially. In addition, as suggested previously in the symbol timing detection subsection, the coefficients of the matched filter can be quantized to -1, 0, 1 to reduce hardware complexity.
In MIMO-OFDM systems, the transmit antennas are often co-located, so are the receive antennas.
Hence, it is valid to assume that only one oscillator is referenced in either the transmitter side or the receiver side. As a result, a single CFO set is to be estimated for the multiple receive antennas. The ML estimation for the fractional CFO is quite popular in MIMO-OFDM systems.
Another fractional CFO estimation algorithm for MIMO-OFDM systems applies different weights to the receive signals according to the respective degrees of channel fading
The preamble is designed so that each transmit antenna uses non-overlapping sub carriers to facilitate separation of signals from different transmit antennas. At each receive antenna, the cross-correlation between the received signal and the known preamble is examined.
The magnitude of the cross-correlation output reflects the channel fading between the corresponding transmit and receive antenna pair.
Based on the channel fading information, weights are applied to the received signals to emphasize those with stronger channel gains and at the same time to suppress those that are deeply faded.
Then, the CFO is estimated based on the phase of delay correlation of weighted signals. For integer CFO, frequency-domain cross-correlation and frequency-domain PN correlation can be used with slight modification. First, the received signals must be compensated by the estimated fractional CFO.
Then, the compensated signals are transformed into the frequency domain. The frequency-domain cross-correlation algorithm for one specific receive antenna is similar to that in the SISO case
Although the CFO in the received signal has been estimated and compensated in the receiver, some residual CFO may still exist. Besides, the CFO contained in the received signal may very well be time-varying and, thus, it needs to be continuously tracked.
The received signal also suffers from sampling clock offset (SCO), which may cause a gradual drift of the safe DFT window in addition to extra phase shift in the received frequency-domain signals. In frame-based OFDM systems, both the residual CFO tracking and the SCO tracking are inevitable, because the receiver may operate for a long period of time. In packet-based OFDM systems, however, the influences of these two offsets depend on the packet length and the magnitude of the offsets.
The SCO may not be easily estimated from the time-domain signal. However, it can be examined through the phase shift of the frequency-domain pilot signals. The residual CFO can also be estimated in a similar way. In many OFDM wireless communication standards, for example, DVB-T, IEEE 802.11 a/g/n, and IEEE 802.16e OFDM mode, dedicated pilot subcarriers are allocated to facilitate receiver synchronization.
The phase shifts in the received frequency-domain signals caused by the CFO are identical at all subcarriers provided that the ICI is ignored. On the other hand, the SCO causes phase shifts that are proportional to the respective sub carrier indices.
The received signals contain ICI and noise, and therefore the phases deviate from the two ideal straight lines. Conventionally, the SCO can be estimated by computing a slope from the plot of measured pilot subcarrier phase differences versus pilot subcarrier indices. Moreover, joint estimation of CFO and SCO has also been studied extensively.
In order to suppress the ICI and thereby reduce SNR degradation, the residual CFO must be sufficiently small. For example, when using the 64QAM constellation, it is better to keep the residual CFO below 0. 01/s to ensure that DSNR < 0 . 3 dB for moderate SNR.
On the other hand, when QPSK is used, the residual CFO can be up to 0.03 fs.
In telecommunications, orthogonal frequency-division multiplexing (OFDM) is a type of digital transmission used in digital modulation for encoding digital (binary) data on multiple carrier frequencies. OFDM has developed into a popular scheme for wideband digital communication, used in applications such as digital television and audio broadcasting, DSL internet access, wireless networks, power line networks, and 4G/5G mobile communications.
In particle physics, Rutherford scattering is the elastic scattering of charged particles by the Coulomb interaction. It is a physical phenomenon explained by Ernest Rutherford in 1911 that led to the development of the planetary Rutherford model of the atom and eventually the Bohr model. Rutherford scattering was first referred to as Coulomb scattering because it relies only upon the static electric (Coulomb) potential, and the minimum distance between particles is set entirely by this potential. The classical Rutherford scattering process of alpha particles against gold nuclei is an example of "elastic scattering" because neither the alpha particles nor the gold nuclei are internally excited. The Rutherford formula further neglects the recoil kinetic energy of the massive target nucleus.
In telecommunication, the term critical frequency has the following meanings:
A heterodyne is a signal frequency that is created by combining or mixing two other frequencies using a signal processing technique called heterodyning, which was invented by Canadian inventor-engineer Reginald Fessenden. Heterodyning is used to shift signals from one frequency range into another, and is also involved in the processes of modulation and demodulation. The two input frequencies are combined in a nonlinear signal-processing device such as a vacuum tube, transistor, or diode, usually called a mixer.
Coaxial cable, or coax, is a type of electrical cable consisting of an inner conductor surrounded by a concentric conducting shield, with the two separated by a dielectric ; many coaxial cables also have a protective outer sheath or jacket. The term coaxial refers to the inner conductor and the outer shield sharing a geometric axis.
Additive white Gaussian noise (AWGN) is a basic noise model used in information theory to mimic the effect of many random processes that occur in nature. The modifiers denote specific characteristics:
In thermodynamics and solid-state physics, the Debye model is a method developed by Peter Debye in 1912 to estimate phonon contribution to the specific heat in a solid. It treats the vibrations of the atomic lattice (heat) as phonons in a box in contrast to the Einstein photoelectron model, which treats the solid as many individual, non-interacting quantum harmonic oscillators. The Debye model correctly predicts the low-temperature dependence of the heat capacity of solids, which is proportional to – the Debye T 3 law. Similarly to the Einstein photoelectron model, it recovers the Dulong–Petit law at high temperatures. Due to simplifying assumptions, its accuracy suffers at intermediate temperatures.
In mathematics and signal processing, the Hilbert transform is a specific singular integral that takes a function, u(t) of a real variable and produces another function of a real variable H(u)(t). The Hilbert transform is given by the Cauchy principal value of the convolution with the function (see § Definition). The Hilbert transform has a particularly simple representation in the frequency domain: It imparts a phase shift of ±90° (π/2 radians) to every frequency component of a function, the sign of the shift depending on the sign of the frequency (see § Relationship with the Fourier transform). The Hilbert transform is important in signal processing, where it is a component of the analytic representation of a real-valued signal u(t). The Hilbert transform was first introduced by David Hilbert in this setting, to solve a special case of the Riemann–Hilbert problem for analytic functions.
Einstein coefficients are quantities describing the probability of absorption or emission of a photon by an atom or molecule. The Einstein A coefficients are related to the rate of spontaneous emission of light, and the Einstein B coefficients are related to the absorption and stimulated emission of light. Throughout this article, "light" refers to any electromagnetic radiation, not necessarily in the visible spectrum.
Cylindrical multipole moments are the coefficients in a series expansion of a potential that varies logarithmically with the distance to a source, i.e., as . Such potentials arise in the electric potential of long line charges, and the analogous sources for the magnetic potential and gravitational potential.
In mathematics, Fejér's theorem, named after Hungarian mathematician Lipót Fejér, states the following:
A carrier recovery system is a circuit used to estimate and compensate for frequency and phase differences between a received signal's carrier wave and the receiver's local oscillator for the purpose of coherent demodulation.
In statistical signal processing, the goal of spectral density estimation (SDE) or simply spectral estimation is to estimate the spectral density of a signal from a sequence of time samples of the signal. Intuitively speaking, the spectral density characterizes the frequency content of the signal. One purpose of estimating the spectral density is to detect any periodicities in the data, by observing peaks at the frequencies corresponding to these periodicities.
Carrier Interferometry(CI) is a spread spectrum scheme designed to be used in an Orthogonal Frequency-Division Multiplexing (OFDM) communication system for multiplexing and multiple access, enabling the system to support multiple users at the same time over the same frequency band.
In 1927, a year after the publication of the Schrödinger equation, Hartree formulated what are now known as the Hartree equations for atoms, using the concept of self-consistency that Lindsay had introduced in his study of many electron systems in the context of Bohr theory. Hartree assumed that the nucleus together with the electrons formed a spherically symmetric field. The charge distribution of each electron was the solution of the Schrödinger equation for an electron in a potential , derived from the field. Self-consistency required that the final field, computed from the solutions, was self-consistent with the initial field, and he thus called his method the self-consistent field method.
IQ imbalance is a performance-limiting issue in the design of a class of radio receivers known as direct conversion receivers. These translate the received radio frequency signal directly from the carrier frequency to baseband using a single mixing stage.
Vasiliev equations are formally consistent gauge invariant nonlinear equations whose linearization over a specific vacuum solution describes free massless higher-spin fields on anti-de Sitter space. The Vasiliev equations are classical equations and no Lagrangian is known that starts from canonical two-derivative Frønsdal Lagrangian and is completed by interactions terms. There is a number of variations of Vasiliev equations that work in three, four and arbitrary number of space-time dimensions. Vasiliev's equations admit supersymmetric extensions with any number of super-symmetries and allow for Yang–Mills gaugings. Vasiliev's equations are background independent, the simplest exact solution being anti-de Sitter space. It is important to note that locality is not properly implemented and the equations give a solution of certain formal deformation procedure, which is difficult to map to field theory language. The higher-spin AdS/CFT correspondence is reviewed in Higher-spin theory article.
The Egorychev method is a collection of techniques introduced by Georgy Egorychev for finding identities among sums of binomial coefficients, Stirling numbers, Bernoulli numbers, Harmonic numbers, Catalan numbers and other combinatorial numbers. The method relies on two observations. First, many identities can be proved by extracting coefficients of generating functions. Second, many generating functions are convergent power series, and coefficient extraction can be done using the Cauchy residue theorem. The sought-for identity can now be found using manipulations of integrals. Some of these manipulations are not clear from the generating function perspective. For instance, the integrand is usually a rational function, and the sum of the residues of a rational function is zero, yielding a new expression for the original sum. The residue at infinity is particularly important in these considerations. Some of the integrals employed by the Egorychev method are:
Non-orthogonal frequency-division multiplexing (N-OFDM) is a method of encoding digital data on multiple carrier frequencies with non-orthogonal intervals between frequency of sub-carriers. N-OFDM signals can be used in communication and radar systems.
The Lorentz oscillator model describes the optical response of bound charges. The model is named after the Dutch physicist Hendrik Antoon Lorentz. It is a classical, phenomenological model for materials with characteristic resonance frequencies for optical absorption, e.g. ionic and molecular vibrations, interband transitions (semiconductors), phonons, and collective excitations.