Cassini oval

Last updated
Three Cassini ovals, differing by the range within which the parameter e (equal to b/a) falls:
.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}
0 < e < 1
e = 1
1 < e < [?]2
Not shown: e >= [?]2 (convex). Cassini-3kurv.svg
Three Cassini ovals, differing by the range within which the parameter e (equal to b/a) falls:
  0 < e < 1
  e = 1
  1 < e < 2
Not shown: e2 (convex).

In geometry, a Cassini oval is a quartic plane curve defined as the locus of points in the plane such that the product of the distances to two fixed points (foci) is constant. This may be contrasted with an ellipse, for which the sum of the distances is constant, rather than the product. Cassini ovals are the special case of polynomial lemniscates when the polynomial used has degree 2.

Contents

Cassini ovals are named after the astronomer Giovanni Domenico Cassini who studied them in the late 17th century. [1] Cassini believed that the Sun traveled around the Earth on one of these ovals, with the Earth at one focus of the oval.[ citation needed ] Other names include Cassinian ovals, Cassinian curves and ovals of Cassini.

Formal definition

Cassini oval:
|
P
P
1
|
x
|
P
P
2
|
=
b
2
{\displaystyle |PP_{1}|\!\!\;\times \!\!\;|PP_{2}|=b^{2}}
for any location of P on the curve Cassini-k-def0.svg
Cassini oval: for any location of P on the curve

A Cassini oval is a set of points, such that for any point of the set, the product of the distances to two fixed points is a constant, usually written as where :

As with an ellipse, the fixed points are called the foci of the Cassini oval.

Equations

If the foci are (a, 0) and (−a, 0), then the equation of the curve is

When expanded this becomes

The equivalent polar equation is

Shape

Some Cassini ovals. (b = 0.6a, 0.8a, a, 1.2a, 1.4a, 1.6a) Line of Cassini.svg
Some Cassini ovals. (b = 0.6a, 0.8a, a, 1.2a, 1.4a, 1.6a)

The curve depends, up to similarity, on e = b/a. When e < 1, the curve consists of two disconnected loops, each of which contains a focus. When e = 1, the curve is the lemniscate of Bernoulli having the shape of a sideways figure eight with a double point (specifically, a crunode) at the origin. [2] [3] When e >1, the curve is a single, connected loop enclosing both foci. It is peanut-shaped for and convex for . [4] The limiting case of a → 0 (hence e), in which case the foci coincide with each other, is a circle.

The curve always has x-intercepts at ±c where c2 = a2 + b2. When e < 1 there are two additional real x-intercepts and when e >1 there are two real y-intercepts, all other x- and y-intercepts being imaginary. [5]

The curve has double points at the circular points at infinity, in other words the curve is bicircular. These points are biflecnodes, meaning that the curve has two distinct tangents at these points and each branch of the curve has a point of inflection there. From this information and Plücker's formulas it is possible to deduce the Plücker numbers for the case e  1: degree = 4, class = 8, number of nodes = 2, number of cusps = 0, number of double tangents = 8, number of points of inflection = 12, genus = 1. [6]

The tangents at the circular points are given by x ± iy = ±a which have real points of intersection at (±a, 0). So the foci are, in fact, foci in the sense defined by Plücker. [7] The circular points are points of inflection so these are triple foci. When e  1 the curve has class eight, which implies that there should be a total of eight real foci. Six of these have been accounted for in the two triple foci and the remaining two are at

So the additional foci are on the x-axis when the curve has two loops and on the y-axis when the curve has a single loop. [8]

Cassini ovals and orthogonal trajectories

Cassini ovals and their orthogonal trajectories (hyperbolas) Cassini-hyp.svg
Cassini ovals and their orthogonal trajectories (hyperbolas)

Orthogonal trajectories of a given pencil of curves are curves which intersect all given curves orthogonally. For example the orthogonal trajectories of a pencil of confocal ellipses are the confocal hyperbolas with the same foci. For Cassini ovals one has:

Proof:
For simplicity one chooses .

The Cassini ovals have the equation
The equilateral hyperbolas (their asymptotes are rectangular) containing with center can be described by the equation

These conic sections have no points with the y-axis in common and intersect the x-axis at . Their discriminants show that these curves are hyperbolas. A more detailed investigation reveals that the hyperbolas are rectangular. In order to get normals, which are independent from parameter the following implicit representation is more convenient

A simple calculation shows that for all . Hence the Cassini ovals and the hyperbolas intersect orthogonally.

Remark:
The image depicting the Cassini ovals and the hyperbolas looks like the equipotential curves of two equal point charges together with the lines of the generated electrical field. But for the potential of two equal point charges one has . (See Implicit curve.) Instead these curves actually correspond to the (plane sections of) equipotential sets of two infinite wires with equal constant line charge density, or alternatively, to the level sets of the sums of the Green’s functions for the Laplacian in two dimensions centered at the foci.

The single-loop and double loop Cassini curves can be represented as the orthogonal trajectories of each other when each family is coaxal but not confocal. If the single-loops are described by then the foci are variable on the axis if , if ; if the double-loops are described by then the axes are, respectively, and . Each curve, up to similarity, appears twice in the image, which now resembles the field lines and potential curves for four equal point charges, located at and . Further, the portion of this image in the upper half-plane depicts the following situation: The double-loops are a reduced set of congruence classes for the central Steiner conics in the hyperbolic plane produced by direct collineations; [9] and each single-loop is the locus of points such that the angle is constant, where and is the foot of the perpendicular through on the line described by .

Examples

The second lemniscate of the Mandelbrot set is a Cassini oval defined by the equation Its foci are at the points c on the complex plane that have orbits where every second value of z is equal to zero, which are the values 0 and −1.

Cassini ovals on tori

Cassini ovals as planar sections of a torus (the torus on the right is a spindle torus) Tor-cass-1-3.svg
Cassini ovals as planar sections of a torus (the torus on the right is a spindle torus)

Cassini ovals appear as planar sections of tori, but only when

The intersection of the torus with equation

and the plane yields

After partially resolving the first bracket one gets the equation

which is the equation of a Cassini oval with parameters and .

Generalizations

Cassini's method is easy to generalize to curves and surfaces with an arbitrarily many defining points:

describes in the planar case an implicit curve and in 3-space an implicit surface.

See also

Related Research Articles

In mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry.

<span class="mw-page-title-main">Hyperbola</span> Plane curve: conic section

In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. If the plane intersects both halves of the double cone but does not pass through the apex of the cones, then the conic is a hyperbola.

<span class="mw-page-title-main">Ellipsoid</span> Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

In mathematics, the matrix representation of conic sections permits the tools of linear algebra to be used in the study of conic sections. It provides easy ways to calculate a conic section's axis, vertices, tangents and the pole and polar relationship between points and lines of the plane determined by the conic. The technique does not require putting the equation of a conic section into a standard form, thus making it easier to investigate those conic sections whose axes are not parallel to the coordinate system.

<span class="mw-page-title-main">Lemniscate of Bernoulli</span> Plane algebraic curve

In geometry, the lemniscate of Bernoulli is a plane curve defined from two given points F1 and F2, known as foci, at distance 2c from each other as the locus of points P so that PF1·PF2 = c2. The curve has a shape similar to the numeral 8 and to the ∞ symbol. Its name is from lemniscatus, which is Latin for "decorated with hanging ribbons". It is a special case of the Cassini oval and is a rational algebraic curve of degree 4.

<span class="mw-page-title-main">Degenerate conic</span> 2nd-degree plane curve which is reducible

In geometry, a degenerate conic is a conic that fails to be an irreducible curve. This means that the defining equation is factorable over the complex numbers as the product of two linear polynomials.

<span class="mw-page-title-main">Limaçon</span> Type of roulette curve

In geometry, a limaçon or limacon, also known as a limaçon of Pascal or Pascal's Snail, is defined as a roulette curve formed by the path of a point fixed to a circle when that circle rolls around the outside of a circle of equal radius. It can also be defined as the roulette formed when a circle rolls around a circle with half its radius so that the smaller circle is inside the larger circle. Thus, they belong to the family of curves called centered trochoids; more specifically, they are epitrochoids. The cardioid is the special case in which the point generating the roulette lies on the rolling circle; the resulting curve has a cusp.

<span class="mw-page-title-main">Dupin cyclide</span> Geometric inversion of a torus, cylinder or double cone

In mathematics, a Dupin cyclide or cyclide of Dupin is any geometric inversion of a standard torus, cylinder or double cone. In particular, these latter are themselves examples of Dupin cyclides. They were discovered c. 1802 by Charles Dupin, while he was still a student at the École polytechnique following Gaspard Monge's lectures. The key property of a Dupin cyclide is that it is a channel surface in two different ways. This property means that Dupin cyclides are natural objects in Lie sphere geometry.

<span class="mw-page-title-main">Focus (geometry)</span> Geometric point from which certain types of curves are constructed

In geometry, focuses or foci are special points with reference to which any of a variety of curves is constructed. For example, one or two foci can be used in defining conic sections, the four types of which are the circle, ellipse, parabola, and hyperbola. In addition, two foci are used to define the Cassini oval and the Cartesian oval, and more than two foci are used in defining an n-ellipse.

<span class="mw-page-title-main">Bipolar coordinates</span> 2-dimensional orthogonal coordinate system based on Apollonian circles

Bipolar coordinates are a two-dimensional orthogonal coordinate system based on the Apollonian circles. Confusingly, the same term is also sometimes used for two-center bipolar coordinates. There is also a third system, based on two poles.

<span class="mw-page-title-main">Bipolar cylindrical coordinates</span>

Bipolar cylindrical coordinates are a three-dimensional orthogonal coordinate system that results from projecting the two-dimensional bipolar coordinate system in the perpendicular -direction. The two lines of foci and of the projected Apollonian circles are generally taken to be defined by and , respectively, in the Cartesian coordinate system.

<span class="mw-page-title-main">Spiric section</span>

In geometry, a spiric section, sometimes called a spiric of Perseus, is a quartic plane curve defined by equations of the form

<span class="mw-page-title-main">Conic section</span> Curve from a cone intersecting a plane

A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes called as a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties.

<span class="mw-page-title-main">Unit hyperbola</span> Geometric figure

In geometry, the unit hyperbola is the set of points (x,y) in the Cartesian plane that satisfy the implicit equation In the study of indefinite orthogonal groups, the unit hyperbola forms the basis for an alternative radial length

<span class="mw-page-title-main">Cartesian oval</span> Class of geometric plane curves

In geometry, a Cartesian oval is a plane curve consisting of points that have the same linear combination of distances from two fixed points (foci). These curves are named after French mathematician René Descartes, who used them in optics.

In mathematics, a translation of axes in two dimensions is a mapping from an xy-Cartesian coordinate system to an x'y'-Cartesian coordinate system in which the x' axis is parallel to the x axis and k units away, and the y' axis is parallel to the y axis and h units away. This means that the origin O' of the new coordinate system has coordinates (h, k) in the original system. The positive x' and y' directions are taken to be the same as the positive x and y directions. A point P has coordinates (x, y) with respect to the original system and coordinates (x', y') with respect to the new system, where

In mathematics, a generalized conic is a geometrical object defined by a property which is a generalization of some defining property of the classical conic. For example, in elementary geometry, an ellipse can be defined as the locus of a point which moves in a plane such that the sum of its distances from two fixed points – the foci – in the plane is a constant. The curve obtained when the set of two fixed points is replaced by an arbitrary, but fixed, finite set of points in the plane is called an n–ellipse and can be thought of as a generalized ellipse. Since an ellipse is the equidistant set of two circles, where one circle is inside the other, the equidistant set of two arbitrary sets of points in a plane can be viewed as a generalized conic. In rectangular Cartesian coordinates, the equation y = x2 represents a parabola. The generalized equation y = xr, for r ≠ 0 and r ≠ 1, can be treated as defining a generalized parabola. The idea of generalized conic has found applications in approximation theory and optimization theory.

<span class="mw-page-title-main">Confocal conic sections</span> Conic sections with the same foci

In geometry, two conic sections are called confocal if they have the same foci.

<span class="mw-page-title-main">Focal conics</span> Pairs of conic sections in geometry

In geometry, focal conics are a pair of curves consisting of either

<span class="mw-page-title-main">Dupin's theorem</span>

In differential geometry Dupin's theorem, named after the French mathematician Charles Dupin, is the statement:

References

  1. Cassini
  2. Basset p. 163
  3. Lawden
  4. "Cassini oval - Encyclopedia of Mathematics".
  5. Basset p. 163
  6. Basset p. 163
  7. See Basset p. 47
  8. Basset p. 164
  9. Sarli, John (April 2012). "Conics in the hyperbolic plane intrinsic to the collineation group". Journal of Geometry. 103 (1): 131–148. doi:10.1007/s00022-012-0115-5. ISSN   0047-2468. S2CID   253597755.
Bibliography