Catasetum fimbriatum

Last updated

Catasetum fimbriatum
Catasetum fimbriatum Orchi 05.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Monocots
Order: Asparagales
Family: Orchidaceae
Subfamily: Epidendroideae
Genus: Catasetum
Species:
C. fimbriatum
Binomial name
Catasetum fimbriatum
(C. Morren) Lindl. (1850)
Synonyms
  • Myanthus fimbriatus C. Morren (1848) (Basionym)
  • Catasetum fimbriatum var. fissum Rchb.f. (1881)
  • Catasetum fimbriatum var. viridulum Rchb.f. (1887)
  • Catasetum fimbriatum var. platypterum Rchb.f. (1889)
  • Catasetum cogniauxii L. Linden (1900)
  • Catasetum ornithorrhynchum Porsch (1905)
  • Catasetum fimbriatum var. aurantiacum Porsch (1908)
  • Catasetum fimbriatum var. brevipetalum Porsch (1908)
  • Catasetum fimbriatum var. micranthum Porsch (1908)
  • Catasetum pflanzii Schltr. (1912)
  • Catasetum inconstans Hoehne (1915)
  • Catasetum wredeanum Schltr. (1915)
  • Catasetum fimbriatum var. subtropicale Hauman (1917)
  • Catasetum fimbriatum var. inconstans (Hoehne) Mansf. (1932)
  • Catasetum fimbriatum var. morrenianum Mansf. (1932)
  • Catasetum fimbriatum var. ornithorrhynchum (Porsch) Mansf. (1932)

Catasetum fimbriatum, the fringed catasetum, is a member of the orchid family of flowering plants and lives in a warm tropical environment. This plant uses a fascinating strategy to spread its pollen to other flowers via insects, primarily bees. When a pollinator lands on male flowers of C. fimbriatum and stimulates them, pollen is planted onto the back of the pollinator. This assures their gametes will be spread to other flowers the bee visits of the same species. [1]

The mechanism behind how male C. fimbriatum ejects its pollen onto bees is still not well understood. However, kinetic studies have been done. When a bee lands on the flower this stimulates the antennae triggering a quick change in membrane potential. This propagates an action potential that results in an increase in turgor pressure. Immediately following an ejection of pollen onto the back of the bee and according to Simon et al., [2] can sometimes knock the bee off the flower. Indeed, this was probably an evolved adaptation to prevent cross pollination [3]

Darwin's bee-trap experiment analyzed the kinetics and activation of this trigger mechanism of slapping pollen onto the back of bees. Frame by frame analysis was conducted with a V5.0 digital camera that captures images at 1,000 pictures per second. [3] The antennae of the orchid that set off the catapult of pollen was activated using a small wire. Many other experiments have shown evidence of electrical changes in membrane potential in plants such as the carnivorous Venus flytrap using ion-selective micro-electrodes [4] and the Mimosa plant using ion analysis in addition to X-ray fluorescence spectroscopy. [5] Future experiments utilizing these techniques could elucidate a more vivid picture of how this mechanism works on the molecular level.

Related Research Articles

<span class="mw-page-title-main">Orchid</span> Family of flowering plants in the order Asparagales

Orchids are plants that belong to the family Orchidaceae, a diverse and widespread group of flowering plants with blooms that are often colourful and fragrant. Orchids are cosmopolitan plants that are found in almost every habitat on Earth except glaciers. The world's richest diversity of orchid genera and species is found in the tropics.

<span class="mw-page-title-main">Pollination</span> Biological process occurring in plants

Pollination is the transfer of pollen from an anther of a plant to the stigma of a plant, later enabling fertilisation and the production of seeds, most often by an animal or by wind. Pollinating agents can be animals such as insects, for example beetles or butterflies; birds, and bats; water; wind; and even plants themselves. Pollinating animals travel from plant to plant carrying pollen on their bodies in a vital interaction that allows the transfer of genetic material critical to the reproductive system of most flowering plants. When self-pollination occurs within a closed flower. Pollination often occurs within a species. When pollination occurs between species, it can produce hybrid offspring in nature and in plant breeding work.

<span class="mw-page-title-main">Droseraceae</span> Family of carnivorous flowering plants

Droseraceae is a family of carnivorous flowering plants, also known as the sundew family. It consists of approximately 180 species in three extant genera. Representatives of the Droseraceae are found on all continents except Antarctica.

<span class="mw-page-title-main">Venus flytrap</span> Species of carnivorous plant

The Venus flytrap is a carnivorous plant native to the temperate and subtropical wetlands of North Carolina and South Carolina, on the East Coast of the United States. Although various modern hybrids have been created in cultivation, D. muscipula is the only species of the monotypic genus Dionaea. It is closely related to the waterwheel plant and the cosmopolitan sundews (Drosera), all of which belong to the family Droseraceae. Dionaea catches its prey—chiefly insects and arachnids—with a "jaw"-like clamping structure, which is formed by the terminal portion of each of the plant's leaves; when an insect makes contact with the open leaves, vibrations from the prey's movements ultimately trigger the "jaws" to shut via tiny hairs on their inner surfaces. Additionally, when an insect or spider touches one of these hairs, the trap prepares to close, only fully enclosing the prey if a second hair is contacted within (approximately) twenty seconds of the first contact. Triggers may occur as quickly as 110 of a second from initial contact.

<span class="mw-page-title-main">Self-pollination</span> Form of pollination

Self-pollination is a form of pollination in which pollen from the same plant arrives at the stigma of a flower or at the ovule. There are two types of self-pollination: in autogamy, pollen is transferred to the stigma of the same flower; in geitonogamy, pollen is transferred from the anther of one flower to the stigma of another flower on the same flowering plant, or from microsporangium to ovule within a single (monoecious) gymnosperm. Some plants have mechanisms that ensure autogamy, such as flowers that do not open (cleistogamy), or stamens that move to come into contact with the stigma. The term selfing that is often used as a synonym, is not limited to self-pollination, but also applies to other type of self-fertilization.

<span class="mw-page-title-main">Pseudocopulation</span> Biological process

Pseudocopulation describes behaviors similar to copulation that serve a reproductive function for one or both participants but do not involve actual sexual union between the individuals. It is most generally applied to a pollinator attempting to copulate with a flower. Some flowers mimic a potential female mate visually, but the key stimuli are often chemical and tactile. This form of mimicry in plants is called Pouyannian mimicry.

<i>Catasetum</i> Genus of orchids

Catasetum, abbreviated as Ctsm. in horticultural trade, is a genus of showy epiphytic Orchids, family Orchidaceae, subfamily Epidendroideae, tribe Cymbidieae, subtribe Catasetinae, with 166 species, many of which are highly prized in horticulture.

<i>Utricularia</i> Genus of carnivorous plants

Utricularia, commonly and collectively called the bladderworts, is a genus of carnivorous plants consisting of approximately 233 species. They occur in fresh water and wet soil as terrestrial or aquatic species across every continent except Antarctica. Utricularia are cultivated for their flowers, which are often compared with those of snapdragons and orchids, especially amongst carnivorous plant enthusiasts.

<span class="mw-page-title-main">Rapid plant movement</span> Short period movement of plants

Rapid plant movement encompasses movement in plant structures occurring over a very short period, usually under one second. For example, the Venus flytrap closes its trap in about 100 milliseconds. The traps of Utricularia are much faster, closing in about 0.5 milliseconds. The dogwood bunchberry's flower opens its petals and fires pollen in less than 0.5 milliseconds. The record is currently held by the white mulberry tree, with flower movement taking 25 microseconds, as pollen is catapulted from the stamens at velocities in excess of half the speed of sound—near the theoretical physical limits for movements in plants.

<i>Mimosa pudica</i> Species of plant whose leaves fold inward and droop when touched or shaken

Mimosa pudica is a creeping annual or perennial flowering plant of the pea/legume family Fabaceae. It is often grown for its curiosity value: the sensitive compound leaves fold inward and droop when touched or shaken and re-open a few minutes later. It is well known for its rapid plant movement. Like a number of other plant species, it undergoes changes in leaf orientation termed "sleep" or nyctinastic movement. The foliage closes during darkness and reopens in light. This was first studied by French scientist Jean-Jacques d'Ortous. In the UK it has gained the Royal Horticultural Society's Award of Garden Merit.

<span class="mw-page-title-main">Euglossini</span> Tribe of bees

The tribe Euglossini, in the subfamily Apinae, commonly known as orchid bees or euglossine bees, are the only group of corbiculate bees whose non-parasitic members do not all possess eusocial behavior.

<span class="mw-page-title-main">Nectar</span> Sugar-rich liquid produced by many flowering plants, that attracts pollinators and insects

Nectar is a sugar-rich liquid produced by plants in glands called nectaries or nectarines, either within the flowers with which it attracts pollinating animals, or by extrafloral nectaries, which provide a nutrient source to animal mutualists, which in turn provide herbivore protection. Common nectar-consuming pollinators include mosquitoes, hoverflies, wasps, bees, butterflies and moths, hummingbirds, honeyeaters and bats. Nectar plays a crucial role in the foraging economics and evolution of nectar-eating species; for example, nectar foraging behavior is largely responsible for the divergent evolution of the African honey bee, A. m. scutellata and the western honey bee.

<i>Aldrovanda</i> Genus of carnivorous plants

Aldrovanda is a genus of carnivorous plants encompassing one extant species and numerous extinct taxa. The genus is named in honor of the Italian naturalist Ulisse Aldrovandi, the founder of the Botanical Garden of Bologna, Orto Botanico dell'Università di Bologna. Aldrovanda vesiculosa has been reported from scattered locations in Europe, Asia, Africa, and Australia.

<span class="mw-page-title-main">Thigmonasty</span> Undirected movement in response to touch or vibration

In biology, thigmonasty or seismonasty is the nastic (non-directional) response of a plant or fungus to touch or vibration. Conspicuous examples of thigmonasty include many species in the leguminous subfamily Mimosoideae, active carnivorous plants such as Dionaea and a wide range of pollination mechanisms.

<span class="mw-page-title-main">Carnivorous plant</span> Plants that consume animals

Carnivorous plants are plants that derive some or most of their nutrients from trapping and consuming animals or protozoans, typically insects and other arthropods, and occasionally small mammals and birds. They still generate all of their energy from photosynthesis. They have adapted to grow in places where the soil is thin or poor in nutrients, especially nitrogen, such as acidic bogs. They can be found on all continents except Antarctica, as well as many Pacific islands. In 1875, Charles Darwin published Insectivorous Plants, the first treatise to recognize the significance of carnivory in plants, describing years of painstaking research.

<i>Fertilisation of Orchids</i> 1862 book by Charles Darwin

Fertilisation of Orchids is a book by English naturalist Charles Darwin published on 15 May 1862 under the full explanatory title On the Various Contrivances by Which British and Foreign Orchids Are Fertilised by Insects, and On the Good Effects of Intercrossing. Darwin's previous book, On the Origin of Species, had briefly mentioned evolutionary interactions between insects and the plants they fertilised, and this new idea was explored in detail. Field studies and practical scientific investigations that were initially a recreation for Darwin—a relief from the drudgery of writing—developed into enjoyable and challenging experiments. Aided in his work by his family, friends, and a wide circle of correspondents across Britain and worldwide, Darwin tapped into the contemporary vogue for growing exotic orchids.

<span class="mw-page-title-main">Pollination trap</span>

Pollination traps or trap-flowers are plant flower structures that aid the trapping of insects, mainly flies, so as to enhance their effectiveness in pollination. The structures of pollination traps can include deep tubular corollas with downward pointing hairs, slippery surfaces, adhesive liquid, attractants, flower closing and other mechanisms.

<i>Euglossa cordata</i> Species of bee

Euglossa cordata is a primitively eusocial orchid bee of the American tropics. The species is known for its green body color and ability to fly distances of over 50 km. Males mostly disperse and leave their home nests, while females have been observed to possess philopatric behavior. Because of this, sightings are rare and little is known about the species. However, it has been observed that adults who pollinate certain species of orchids will become intoxicated during the pollination.

In plant biology, plant memory describes the ability of a plant to retain information from experienced stimuli and respond at a later time. For example, some plants have been observed to raise their leaves synchronously with the rising of the sun. Other plants produce new leaves in the spring after overwintering. Many experiments have been conducted into a plant's capacity for memory, including sensory, short-term, and long-term. The most basic learning and memory functions in animals have been observed in some plant species, and it has been proposed that the development of these basic memory mechanisms may have developed in an early organismal ancestor.

<span class="mw-page-title-main">Pollination of orchids</span>

The pollination of orchids is a complex chapter in the biology of this family of plants that are distinguished by the complexity of their flowers and by intricate ecological interactions with their pollinator agents. It has captured the attention of numerous scientists over time, including Charles Darwin, father of the theory of evolution by natural selection. Darwin published in 1862 the first observations of the fundamental role of insects in orchid pollination, in his book The Fertilization of Orchids. Darwin stated that the varied stratagems orchids use to attract their pollinators transcend the imagination of any human being.

References

  1. Braam, Janet (2004). "In Touch: Plant Responses to Mechanical Stimuli". New Phytologist. 165 (2): 373–389. doi: 10.1111/j.1469-8137.2004.01263.x .
  2. Simons, Paul. "An Explosive Start for Plants: Plants Get up to Some Ingenious Tricks and Aerial Acrobatics to Ensure Their Survival". New Scientist.
  3. 1 2 Nicholson, Charles C. (2008). "Darwin's Bee-Trap: The Kinetics of Catasetum, a New World Orchid". Plant Signaling & Behavior. 3: 19–23. doi:10.4161/psb.3.1.4980. PMC   2633950 . PMID   19516977.
  4. Hedrich, Rainer (2018). "Venus Flytrap: How an Excitable, Carnivorous Plant Works". Trends in Plant Science. 23 (3): 220–234. doi:10.1016/j.tplants.2017.12.004. PMID   29336976.
  5. Allen, R. D. (1969). "Mechanism of the Seismonastic Reaction in Mimosa Pudica". Plant Physiology. 44: 1101–1107. doi:10.1104/pp.44.8.1101. PMC   396223 . PMID   16657174.