Cellular V2X

Last updated
Types of V2X Types V2X .png
Types of V2X

Cellular V2X (C-V2X) is an umbrella term that comprises all 3rd Generation Partnership Project (3GPP) V2X technologies for connected mobility and self-driving cars. It includes both direct and cellular network communications and is an alternative to 802.11p, the IEEE specified standard for V2V and other forms of V2X communications. [1]

Contents

Cellular V2X uses 3GPP standardised 4G LTE or 5G mobile cellular connectivity to exchange messages between vehicles, pedestrians, and wayside traffic control devices such as traffic signals. It commonly uses the 5.9 GHz frequency band, which is the officially designated intelligent transportation system (ITS) frequency in most countries. C-V2X can function without network assistance and exceeds the range of DSRC by about 25%. [2]

C-V2X was developed within the 3GPP [1] to replace DSRC in the US and C-ITS in Europe. [3]

History

In 2014, 3GPP Release 13 spurred studies to test the applicability of the then current standards to V2X. This resulted in the 3GPP Release 14 specifications for C-V2X communications, finalised in 2017. 3GPP Release 15 introduced 5G for V2N use-cases and 3GPP Release 16 includes work on 5G NR direct communications for V2V/V2I. [4]

In Europe, the EU announced in July 2019 that it was adopting a technology-neutral approach to C-ITS, leaving the way forward for 4G, 5G and other advanced technologies to be part of V2X applications and services. [5]

In the United States, the Federal Communications Commission proposed late in 2019 that 20 MHz and possibly 30 MHz of the 5.9 GHz band be allocated to C-V2X. [6] In November 2020, this proposal was accepted, and the upper 30 MHz (5.895–5.925 GHz) were allocated to C-V2X. [7]

After a slow start linked to the slower-than-expected roll-out of 5G cellular networks, there were more than 50 C-V2X devices on the market in the first half of 2024. [8]

Modes

C-V2X has the following modes:

C-V2X mode 4 communication relies on a distributed resource allocation scheme, namely sensing-based semipersistent scheduling which schedules radio resources in a stand-alone fashion in each user equipment (UE). [11]

Technical limitations

Although the roll-out of 5G services globally promises a dramatic reduction in latency where a signal is strong [12] as well as an increase in security compared with previous networks, [13] all communications systems based entirely on wireless communication, especially older and rural networks, suffer from limitations inherent to wireless communication, including:

Integrating non-terrestrial network coverage in addition to cellular and direct communications is one potential way to address coverage caps and latency concerns. The 5G Automotive Association and European Space Agency have discussed the role of non-terrestrial networks in the connectivity of the car of the future and concluded that it offers many benefits, such as extending more reliable connectivity to rural areas at a comparatively low cost. This, in turn, would enable better digital services and autonomous driving applications. [18]

Outlook

The 5G Automotive Association (5GAA), which comprises companies from the automotive, technology, and telecommunications industries, has published several "roadmaps" [19] that highlight both the potential benefits of C-V2X technologies and the technical, regulatory and market challenges it faces. Most implementations to-date have focused on road safety and improving traffic management, which reduces congestion and pollution.

Artificial intelligence [20] [21] offers one potential solution for managing the large flow of data that will grow as C-V2X communications applications expand in the market. Doubts in artificial intelligence (AI) and decision making by AI exist. [22]

Tests

C-V2X technology is being tested world-wide both at the company and industry level and in publicly funded pilots. For example, ETSI, in partnership with the 5GAA and co-funded by the European Commission, and the European Free Trade Association, has organized several annual C-V2X testing events called "Plugfests". These enable companies manufacturing on-board-C-V2X units, roadside units and public key infrastructure to run interoperability test sessions to assess the level of interoperability of their implementations of C-V2X technology and validate their understanding of the standards. [23]

In October 2023, the 5GAA organized several live demonstrations of the potential of C-V2X technology to protect drivers, pedestrians, cyclists and other vulnerable road users at the Mcity Test Facility at the University of Michigan in Ann Arbor. [24]

In June 2024 the U.S. Department of Transportation announced that it is awarding $60 million in grants to advance connected and interoperable vehicle technologies under a program called "Saving Lives with Connectivity: Accelerating V2X Deployment program". [25] It said the grants to recipients in Arizona, Texas and Utah would serve as national models to accelerate and spur new deployments of V2X technologies.

Literature

Related Research Articles

Extremely high frequency is the International Telecommunication Union designation specifically included in the electromagnetic spectrum classification group with 8 other principal dedicated channel allocation. Extremely high frequency or commonly known as "EHF", is a large broadband that span a radius of about (30 GHz to 300 GHz) for the molecular spectra of radio frequencies. It lies between the super high frequency (3 GHz to 30 GHz) band and the far infrared band (300 GHz to 1015), for which the lower part is the terahertz band. Radio waves in this band have wavelengths from ten to one millimeter, so it is also called the millimeter band and radiation in this band is called millimeter waves, sometimes abbreviated MMW or mmWave. Millimeter-length electromagnetic waves were first investigated by Jagadish Chandra Bose, who generated waves of frequency up to 60 GHz during experiments in 1894–1896.

<span class="mw-page-title-main">Telematics</span> Interdisciplinary field that encompasses telecommunications

Telematics is an interdisciplinary field encompassing telecommunications, vehicular technologies, electrical engineering, and computer science. Telematics can involve any of the following:

Dedicated short-range communications (DSRC) is a technology for direct wireless exchange of vehicle-to-everything (V2X) and other intelligent transportation systems (ITS) data between vehicles, other road users, and roadside infrastructure. DSRC, which can be used for both one- and two-way data exchanges, uses channels in the licensed 5.9 GHz band. DSRC is based on IEEE 802.11p.

IEEE 802.11p is an approved amendment to the IEEE 802.11 standard to add wireless access in vehicular environments (WAVE), a vehicular communication system. It defines enhancements to 802.11 required to support intelligent transportation systems (ITS) applications. This includes data exchange between high-speed vehicles and between the vehicles and the roadside infrastructure, so called vehicle-to-everything (V2X) communication, in the licensed ITS band of 5.9 GHz (5.85–5.925 GHz). IEEE 1609 is a higher layer standard based on the IEEE 802.11p. It is also the basis of a European standard for vehicular communication known as ETSI ITS-G5.

Vehicular communication systems are computer networks in which vehicles and roadside units are the communicating nodes, providing each other with information, such as safety warnings and traffic information. They can be effective in avoiding accidents and traffic congestion. Both types of nodes are dedicated short-range communications (DSRC) devices. DSRC works in 5.9 GHz band with bandwidth of 75 MHz and approximate range of 300 metres (980 ft). Vehicular communications is usually developed as a part of intelligent transportation systems (ITS).

A Vehicular ad hoc network (VANET) is a proposed type of mobile ad hoc network (MANET) involving road vehicles. VANETs were first proposed in 2001 as "car-to-car ad-hoc mobile communication and networking" applications, where networks could be formed and information could be relayed among cars. It has been shown that vehicle-to-vehicle and vehicle-to-roadside communications architectures could co-exist in VANETs to provide road safety, navigation, and other roadside services. VANETs could be a key part of the intelligent transportation systems (ITS) framework. Sometimes, VANETs are referred to as Intelligent Transportation Networks. They could evolve into a broader "Internet of vehicles". which itself could evolve into an "Internet of autonomous vehicles".

A wireless ad hoc network (WANET) or mobile ad hoc network (MANET) is a decentralized type of wireless network. The network is ad hoc because it does not rely on a pre-existing infrastructure, such as routers or wireless access points. Instead, each node participates in routing by forwarding data for other nodes. The determination of which nodes forward data is made dynamically on the basis of network connectivity and the routing algorithm in use.

<span class="mw-page-title-main">Mobile broadband</span> Marketing term

Mobile broadband is the marketing term for wireless Internet access via mobile (cell) networks. Access to the network can be made through a portable modem, wireless modem, or a tablet/smartphone or other mobile device. The first wireless Internet access became available in 1991 as part of the second generation (2G) of mobile phone technology. Higher speeds became available in 2001 and 2006 as part of the third (3G) and fourth (4G) generations. In 2011, 90% of the world's population lived in areas with 2G coverage, while 45% lived in areas with 2G and 3G coverage. Mobile broadband uses the spectrum of 225 MHz to 3700 MHz.

In radio, cooperative multiple-input multiple-output is a technology that can effectively exploit the spatial domain of mobile fading channels to bring significant performance improvements to wireless communication systems. It is also called network MIMO, distributed MIMO, virtual MIMO, and virtual antenna arrays.

Communications access for land mobiles (CALM) is an initiative by the ISO TC 204/Working Group 16 to define a set of wireless communication protocols and air interfaces for a variety of communication scenarios spanning multiple modes of communications and multiple methods of transmissions in Intelligent Transportation System (ITS). The CALM architecture is based on an IPv6 convergence layer that decouples applications from the communication infrastructure. A standardized set of air interface protocols is provided for the best use of resources available for short, medium and long-range, safety critical communications, using one or more of several media, with multipoint (mesh) transfer.

<span class="mw-page-title-main">5G</span> Broadband cellular network standard

In telecommunications, 5G is the fifth generation of cellular network technology, which mobile operators began deploying worldwide in 2019 as the successor to 4G. 5G is based on standards defined by the International Telecommunication Union (ITU) under the IMT-2020 requirements, which outline performance targets for speed, latency, and connectivity to support advanced use cases.

A connected car is a car that can communicate bidirectionally with other systems outside of the car. This connectivity can be used to provide services to passengers or to support or enhance self-driving functionality. For safety-critical applications, it is anticipated that cars will also be connected using dedicated short-range communications (DSRC) or cellular radios, operating in the FCC-granted 5.9 GHz band with very low latency.

<span class="mw-page-title-main">Bernhard Walke</span>

Bernhard H. Walke is a pioneer of mobile Internet access and professor emeritus at RWTH Aachen University in Germany. He is a driver of wireless and mobile 2G to 5G cellular radio networks technologies. In 1985, he proposed a local cellular radio network comprising technologies in use today in 2G, 4G and discussed for 5G systems. For example, self-organization of a radio mesh network, integration of circuit- and packet switching, de-centralized radio resource control, TDMA/spread spectrum data transmission, antenna beam steering, spatial beam multiplexing, interference coordination, S-Aloha based multiple access and demand assigned traffic channels, mobile broadband transmission using mm-waves, and multi-hop communication.

<span class="mw-page-title-main">Robert W. Heath Jr.</span> American electrical engineer and professor

Robert W. Heath Jr. is an American electrical engineer, researcher, educator, wireless technology expert, and a professor in the Department of Electrical and Computer Engineering at the University of California, San Diego. He is also the president and CEO of MIMO Wireless Inc. He was the founding director of the Situation Aware Vehicular Engineering Systems initiative.

<span class="mw-page-title-main">Vehicle-to-everything</span> Communication between a vehicle and any entity that may affect the vehicle

Vehicle-to-everything (V2X) describes wireless communication between a vehicle and any entity that may affect, or may be affected by, the vehicle. Sometimes called C-V2X, it is a vehicular communication system that is intended to improve road safety and traffic efficiency while reducing pollution and saving energy.

The 5G Automotive Association (5GAA) is a corporate coalition to develop and promote standardized protocols for automotive vehicles utilizing 5G communications. It serves as a lobbying group for the European Union on behalf of its membership. Their interests are government investments in the widespread deployment of short-range 5G wireless technology dubbed Cellular V2X.

<span class="mw-page-title-main">RF CMOS</span> Integrated circuit technology that integrates radio-frequency, analog and digital electronics

RF CMOS is a metal–oxide–semiconductor (MOS) integrated circuit (IC) technology that integrates radio-frequency (RF), analog and digital electronics on a mixed-signal CMOS RF circuit chip. It is widely used in modern wireless telecommunications, such as cellular networks, Bluetooth, Wi-Fi, GPS receivers, broadcasting, vehicular communication systems, and the radio transceivers in all modern mobile phones and wireless networking devices. RF CMOS technology was pioneered by Pakistani engineer Asad Ali Abidi at UCLA during the late 1980s to early 1990s, and helped bring about the wireless revolution with the introduction of digital signal processing in wireless communications. The development and design of RF CMOS devices was enabled by van der Ziel's FET RF noise model, which was published in the early 1960s and remained largely forgotten until the 1990s.

<span class="mw-page-title-main">Aerial base station</span>

An Aerial base station (ABS), also known as unmanned aerial vehicle (UAV)-mounted base station (BS), is a flying antenna system that works as a hub between the backhaul network and the access network. If more than one ABS is involved in such a relaying mechanism the so-called fly ad-hoc network (FANET) is established. FANETs are an aerial form of wireless ad hoc networks (WANET)s or mobile ad hoc networks (MANET)s.

<span class="mw-page-title-main">6G</span> 6th generation of cellular mobile communications

In telecommunications, 6G is the designation for a future technical standard of a sixth-generation technology for wireless communications.

References

  1. 1 2 "Cellular V2X as the Essential Enabler of Superior Global Connected Transportation Services". IEEE 5G Tech Focus. 1 (2). IEEE. June 2017.
  2. Zhong, Ziyi; Cordova, Lauren; Halverson, Matthew; Leonard, Blaine. "Field Tests On DSRC And C-V2X Range Of Reception". Utah Department of Transportation . Archived from the original on 2022-11-28. Retrieved 2022-08-23.
  3. Mark Patrick, Benjamin Kirchbeck (January 27, 2018). "V2X-Kommunikation: LTE vs. DSRC" (in German).
  4. GSA: C-V2X Market Report (retrieved 15 October 2019)
  5. Capacity: EU ambassadors reject ‘Wifi-only’ move for autonomous cars (4 July 2019)
  6. Eggerton, John (November 25, 2019). "FCC to split up 5.9 GHZ". Broadcasting & Cable : 20.
  7. "FCC Modernizes 5.9 GHz Band to Improve Wi-Fi and Automotive Safety". Federal Communications Commission. 2020-11-18. Retrieved 2022-04-27.
  8. "2024 list c-v2x devices". 5GAA. Retrieved 2024-07-11.
  9. 1 2 "Autonomous and connected vehicles: navigating the legal issues" (PDF). Archived from the original (PDF) on 2018-08-20. Retrieved 2018-08-20.
  10. JJ Anaya, P Merdrignac, O Shagdar (17 July 2014). "Vehicle to pedestrian communications for protection of vulnerable road users". 2014 IEEE Intelligent Vehicles Symposium Proceedings (PDF). pp. 1037–1042. doi:10.1109/IVS.2014.6856553. ISBN   978-1-4799-3638-0. S2CID   9647051.{{cite book}}: CS1 maint: multiple names: authors list (link) doi : 10.1109/IVS.2014.6856553
  11. Toghi, Behrad; Saifuddin, Md; Fallah, Yaser; Hossein, Nourkhiz Mahjoub; M O, Mughal; Jayanthi, Rao; Sushanta, Das (5–7 December 2018). "Multiple Access in Cellular V2X: Performance Analysis in Highly Congested Vehicular Networks". 2018 IEEE Vehicular Networking Conference (VNC). pp. 1–8. arXiv: 1809.02678 . Bibcode:2018arXiv180902678T. doi:10.1109/VNC.2018.8628416. ISBN   978-1-5386-9428-2. S2CID   52185034.
  12. Jun, Sunmi; Kang, Yoohwa; Kim, Jaeho; Kim, Changki (October 2020). "Ultra-low-latency services in 5G systems: A perspective from 3GPP standards". ETRI Journal. 42 (5): 721–733. doi: 10.4218/etrij.2020-0200 . ISSN   1225-6463.
  13. Nath Mitra, Rupendra; Marina, Mahesh K. (2021). "Wiley Data and Cybersecurity". IEEE . doi:10.1002/9781394197934 (inactive 1 November 2024). Retrieved July 10, 2024.{{cite web}}: CS1 maint: DOI inactive as of November 2024 (link)
  14. Hong-Chuan Yang, Mohamed-Slim Alouini (24 May 2018). "Wireless Transmission of Big Data: Data-Oriented Performance Limits and Their Applications". arXiv: 1805.09923 [eess.SP].
  15. Patrick Nelson (December 7, 2016). "Just one autonomous car will use 4,000GB of data per day". Network World.
  16. Gil Press. "6 Ways To Make Smart Cities Future-Proof Cybersecurity Cities". Forbes .
  17. "Tall structures and their impact on broadcast and other wireless services" (PDF).
  18. "5GAA discusses the role of non-terrestrial networks in the connectivity of the car of the future". 5GAA. Retrieved 2024-07-10.
  19. "5GAA Publishes Updated 2030 Roadmap for Advanced Driving Use Cases, Connectivity Technologies, and Radio Spectrum Needs". 5GAA. Retrieved 2024-07-10.
  20. Suhasini Gadam (2019-01-12). "Artificial Intelligence and Autonomous Vehicles".
  21. "Neuromorphic computing meets the automotive world". Design&Test. October 30, 2017.
  22. "How will AI, Machine Learning and advanced algorithms impact our lives, our jobs and the economy?". Harvard Business.
  23. Christoffersen, Therese. "4th C-V2X PLUGTESTS". ETSI. Retrieved 2024-07-10.
  24. 5G Automotive Association (5GAA) (2024-04-04). 5GAA Detroit Live Showcases . Retrieved 2024-07-10 via YouTube.{{cite AV media}}: CS1 maint: numeric names: authors list (link)
  25. "USDOT Awards Nearly $60 Million in Advanced Vehicle Technology Grants to Arizona, Texas and Utah to Serve as National Models and Help Save Lives on Our Nation's Roadways". June 20, 2024.