Vehicle-to-everything

Last updated
Vehicle to x (Illustration) Car2x communication.jpg
Vehicle to x (Illustration)

Vehicle-to-everything (V2X) is communication between a vehicle and any entity that may affect, or may be affected by, the vehicle. It is a vehicular communication system that incorporates other more specific types of communication as V2I (vehicle-to-infrastructure), V2N (vehicle-to-network), V2V (vehicle-to-vehicle), V2P (vehicle-to-pedestrian), V2D (vehicle-to-device).

Contents

V2X can be grouped into two supergroups, V2X using common communication technologies like bluetooth or mobile networks and V2X using a dedicated special communication technology. The main motivations for the dedicated V2X technology are road safety, traffic efficiency, energy savings, and mass surveillance. The U.S. NHTSA estimates a minimum of 13% reduction in traffic accidents if a V2V system were implemented, resulting in 439,000 fewer crashes per year. [1] Equally, V2X technology is already used in countries such as China, where different safety information is being communicated between vehicles to reduce road accidents. [2] There are two standards for dedicated V2X communication depending on the underlying technology being used: (1) WLAN-based, and (2) cellular-based.

The term V2X contains the following sub categories:

History

The history of working on vehicle-to-vehicle communication projects to increase safety, reduce accidents and driver assistance can be traced back to the 1970s with projects such as the US Electronic Road Guidance System (ERGS) and Japan's CACS. [4] Most milestones in the history of vehicle networks originate from the United States, Europe, and Japan. [4]

Standardization of WLAN-based V2X supersedes that of cellular-based V2X systems. IEEE first published the specification of WLAN-based V2X (IEEE 802.11p) in 2010. [5] It supports direct communication between vehicles (V2V) and between vehicles and infrastructure (V2I). This technology is referred to as Dedicated Short Range Communication (DSRC). DSRC uses the underlying radio communication provided by 802.11p.

In 2016, Toyota became the first automaker globally to introduce automobiles equipped with V2X. These vehicles use DSRC technology and are only for sale in Japan. In 2017, GM became the second automaker to introduce V2X. GM sells a Cadillac model in the United States that also is equipped with DSRC V2X.

In 2016, 3GPP published V2X specifications based on LTE as the underlying technology. It is generally referred to as "cellular V2X" (C-V2X) to differentiate itself from the 802.11p based V2X technology. In addition to the direct communication (V2V, V2I), C-V2X also supports wide area communication over a cellular network (V2N).

As of December 2017, a European automotive manufacturer has announced to deploy V2X technology based on 802.11p from 2019. [6] While some studies and analysis in 2017 [6] and 2018, [7] all performed by the 5G Automotive Association (5GAA) – the industry organisation supporting and developing the C-V2X technology – indicate that cellular-based C-V2X technology in direct communication mode is superior to 802.11p in multiple aspects, such as performance, communication range, and reliability, many of these claims are disputed, e.g. in a whitepaper published by NXP, [8] one of the companies active in the 802.11p based V2X technology, but also published by peer-reviewed journals. [9]

This technology can be misused to remotely control the vehicle. The Police of the Czech Republic(2024) announced, in cooperation with universities, has developed a system for remote stopping of vehicles with reference to the fact that such a procedure is legal even under the current legislation. [10]

Technology overview

802.11p (DSRC)

The original V2X communication uses WLAN technology and works directly between vehicles (V2V) as well as vehicles and traffic infrastructure (V2I), which form a vehicular ad-hoc network as two V2X senders come within each other's range. Hence it does not require any communication infrastructure for vehicles to communicate, which is key to assure safety in remote or little-developed areas. WLAN is particularly well-suited for V2X communication, due to its low latency. It transmits messages known as Cooperative Awareness Messages (CAM) or Basic Safety Message (BSM), and Decentralised Environmental Notification Messages (DENM). Other roadside infrastructure related messages are Signal Phase and Timing Message (SPAT), In Vehicle Information Message (IVI), and Service Request Message (SRM). The data volume of these messages is very low. The radio technology is part of the WLAN IEEE 802.11 family of standards and known in the US as Wireless Access in Vehicular Environments (WAVE) and in Europe as ITS-G5. [11] To complement the direct communication mode, vehicles can be equipped with traditional cellular communication technologies, supporting V2N based services. This extension with V2N was achieved in Europe under the C-ITS platform umbrella [12] with cellular systems and broadcast systems (TMC/DAB+).

3GPP (C-V2X)

More recent V2X communication uses cellular networks and is called cellular V2X (or C-V2X) to differentiate it from the WLAN-based V2X. There have been multiple industry organizations, such as the 5G Automotive Association (5GAA) promoting C-V2X due to its advantages over WLAN based V2X (without considering disadvantages at the same time). [13] C-V2X is initially defined as LTE in 3GPP Release 14 and is designed to operate in several modes:

  1. Device-to-device (V2V or V2I), and
  2. Device-to-network (V2N).

In 3GPP Release 15, the V2X functionalities are expanded to support 5G. C-V2X includes support of both direct communication between vehicles (V2V) and traditional cellular-network based communication. Also, C-V2X provides a migration path to 5G based systems and services, which implies incompatibility and higher costs compared to 4G based solutions.

The direct communication between vehicle and other devices (V2V, V2I) uses so-called PC5 interface. PC5 refers to a reference point where the User Equipment (UE), i.e. mobile handset, directly communicates with another UE over the direct channel. In this case, the communication with the base station is not required. In system architectural level, proximity service (ProSe) is the feature that specifies the architecture of the direct communication between UEs. In 3GPP RAN specifications, "sidelink" is the terminology to refer to the direct communication over PC5. PC5 interface was originally defined to address the needs of mission-critical communication for public safety community (Public Safety-LTE, or PS-LTE) in release 13. The motivation of the mission-critical communication was to allow law enforcement agencies or emergency rescue to use the LTE communication even when the infrastructure is not available, such as natural disaster scenario. In release 14 onwards, the use of PC5 interface has been expanded to meet various market needs, such as communication involving wearable devices such as smartwatch. In C-V2X, PC5 interface is re-applied to the direct communication in V2V and V2I.

The Cellular V2X mode 4 communication relies on a distributed resource allocation scheme, namely sensing-based semipersistent scheduling which schedules radio resources in a stand-alone fashion in each user equipment (UE). [14] [15] [16]

In addition to the direct communication over PC5, C-V2X also allows the C-V2X device to use the cellular network connection in the traditional manner over Uu interface. Uu refers to the logical interface between the UE and the base station. This is generally referred to as vehicle-to-network (V2N). V2N is a unique use case to C-V2X and does not exist in 802.11p based V2X given that the latter supports direct communication only. However, similar to WLAN based V2X also in case of C-V2X, two communication radios are required to be able to communicate simultaneously via a PC5 interface with nearby stations and via the UU interface with the network.

While 3GPP defines the data transport features that enable V2X, it does not include V2X semantic content but proposes usage of ITS-G5 standards like CAM, DENM, BSM, etc. over 3GPP V2X data transport features. [17]

Use cases

Through its instant communication V2X allows road safety applications such as (non-exhaustive list):

The US National Highway Traffic Safety Administration's (NHTSA) report “Vehicle-to-Vehicle Communications: Readiness of V2V Technology for Application“ [18] lists the initial use cases envisioned for the US. European standardisation body ETSI and SAE published standards on what they see as use cases. [19] [20] Early use cases focus on road safety and efficiency. [21] New and advanced use cases are introduced by organizations such as 3GPP, 5GAA, and 5GCAR, these use cases address high levels of automation. [4]

In the medium term V2X is perceived as a key enabler for autonomous driving, assuming it would be allowed to intervene into the actual driving. In that case vehicles would be able to join platoons, the way HGVs do. With the advent of connected and autonomous mobility, V2X discussions are seen to play an important role, especially in the context of teleoperations for autonomous vehicles [22] and platooning [23] [24]

Standardisation history

IEEE 802.11p

WLAN-based V2X communication is based on a set of standards drafted by the American Society for Testing and Materials (ASTM). The ASTM E 2213 series of standards looks at wireless communication for high-speed information exchange between vehicles themselves as well as road infrastructure. The first standard of this series was published 2002. Here the acronym Wireless Access in Vehicular Environments (WAVE) was first used for V2X communication.

From 2004 onwards the Institute Electrical and Electronics Engineers (IEEE) started to work on wireless access for vehicles under the umbrella of their standards family IEEE 802.11 for Wireless Local Area Networks (WLAN). Their initial standard for wireless communication for vehicles is known as IEEE 802.11p and is based on the work done by the ASTM. Later on in 2012 IEEE 802.11p was incorporated in IEEE 802.11.

Around 2007 when IEEE 802.11p got stable, IEEE started to develop the 1609.x standards family standardising applications and a security framework [25] (IEEE uses the term WAVE), and soon after SAE started to specify standards for V2V communication applications. SAE uses the term DSRC for this technology (this is how the term was coined in the US). In parallel at ETSI the technical committee for Intelligent transportation system (ITS) was founded and started to produce standards for protocols and applications [26] (ETSI coined the term ITS-G5). All these standards are based on IEEE 802.11p technology.

Between 2012 and 2013, the Japanese Association of Radio Industries and Businesses (ARIB) specified, also based on IEEE 802.11, a V2V and V2I communication system in the 700 MHz frequency band. [27]

In 2015 ITU published as summary of all V2V and V2I standards that are worldwide in use, comprising the systems specified by ETSI, IEEE, ARIB, and TTA (Republic of Korea, Telecommunication Technology Association). [28]

3GPP

3GPP started standardization work of cellular V2X (C-V2X) in Release 14 in 2014. It is based on LTE as the underlying technology. Specifications were published in 2017. Because this C-V2X functionalities are based on LTE, it is often referred to as LTE-V2X. The scope of functionalities supported by C-V2X includes both direct communication (V2V, V2I) as well as wide area cellular network communication (V2N).

In Release 15, 3GPP continued its C-V2X standardization to be based on 5G. Specifications are published in 2018 as Release 15 comes to completion. To indicate the underlying technology, the term 5G-V2X is often used in contrast to LTE-based V2X (LTE-V2X). Either case, C-V2X is the generic terminology that refers to the V2X technology using the cellular technology irrespective of the specific generation of technology.

In Release 16, 3GPP further enhances the C-V2X functionality. The work is currently in progress. In this way, C-V2X is inherently future-proof by supporting migration path to 5G.

Study and analysis were done [6] [7] to compare the effectiveness of direct communication technologies between LTE-V2X PC5 and 802.11p from the perspective of accident avoided and reduction in fatal and serious injuries. The study shows that LTE-V2X achieves higher level of accident avoidance and reduction in injury. [6] It also indicates LTE-V2X performs higher percentage of successful packet delivery and communication range. Another link-level and system-level simulation result indicates that, to achieve the same link performance for both line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios, lower signal-to-noise-ratio (SNR) are achievable by LTE-V2X PC5 interface compared to IEEE 802.11p. [7]

Cellular-based V2X solution also leads to the possibility of further protecting other types of road users (e.g. pedestrian, cyclist) by having PC5 interface to be integrated into smartphones, effectively integrating those road users into the overall C-ITS solution. Vehicle-to-person (V2P) includes Vulnerable Road User (VRU) scenarios to detect pedestrians and cyclists to avoid accident and injuries involving those road users.

As both direct communication and wide area cellular network communication are defined in the same standard (3GPP), both modes of communication will likely be integrated into a single chipset. Commercialization of those chipsets further enhances economy of scale and leads to possibilities to wider range of business models and services using both types of communications.

Regulatory history

United States

In 1999 the US Federal Communications Commission (FCC) allocated 75 MHz in the spectrum of 5.850-5.925 GHz for intelligent transport systems. [29]

Since then the US Department of Transportation (USDOT) has been working with a range of stakeholders on V2X. In 2012 a pre-deployment project was implemented in Ann Arbor, Michigan. 2800 vehicles covering cars, motorcycles, buses and HGV of different brands took part using equipment by different manufacturers. [30] The US National Highway Traffic Safety Administration (NHTSA) saw this model deployment as proof that road safety could be improved and that WAVE standard technology was interoperable. In August 2014 NHTSA published a report arguing vehicle-to-vehicle technology was technically proven as ready for deployment. [18] On 20 August 2014 the NHTSA published an Advance Notice of Proposed Rulemaking (ANPRM) in the Federal Register, [31] arguing that the safety benefits of V2X communication could only be achieved if a significant part of the vehicles fleet was equipped. Because of the lack of an immediate benefit for early adopters, the NHTSA proposed a mandatory introduction. On 25 June 2015 the US House of Representatives held a hearing on the matter, [32] where again the NHTSA, as well as other stakeholders argued the case for V2X. [33]

On November 18, 2020, the FCC reallocated 45 MHz in the 5.850–5.895 GHz range to Wi-Fi, and the rest of the V2X band to C-V2X, citing the failure of DSRC to take off. [34] The advocacy organizations ITS America and American Association of State Highway and Transportation Officials sued the FCC, arguing that the decision harms users of DSRC; on August 12, 2022, a federal court permitted the reassignment to go ahead. [35]

Europe

To acquire EU-wide spectrum, radio applications require a harmonised standard, in case of ITS-G5 ETSI EN 302 571, [36] first published in 2008. A harmonised standard in turn requires an ETSI System Reference Document, here ETSI TR 101 788. [37] Commission Decision 2008/671/EC harmonises the use of the 5 875-5 905 MHz frequency band for transport safety ITS applications. [38] In 2010 the ITS Directive 2010/40/EU [39] was adopted. It aims to assure that ITS applications are interoperable and can operate across national borders, it defines priority areas for secondary legislation, which cover V2X and requires technologies to be mature. In 2014 the European Commission's industry stakeholder “C-ITS Deployment Platform” started working on a regulatory framework for V2X in the EU. [40] It identified key approaches to an EU-wide V2X security Public Key infrastructure (PKI) and data protection, as well as facilitating a mitigation standard [41] to prevent radio interference between ITS-G5 based V2X and road charging systems. The European Commission recognised ITS-G5 as the initial communication technology in its 5G Action Plan [42] and the accompanying explanatory document, [43] to form a communication environment consisting of ITS-G5 and cellular communication as envisioned by EU Member States. [44] Various pre-deployment projects exist at EU or EU Member State level, such as SCOOP@F, the Testfeld Telematik, the digital testbed Autobahn, the Rotterdam-Vienna ITS Corridor, Nordic Way, COMPASS4D or C-ROADS. [45] There exist real scenarios of implementation V2X standard as well. The first commercial project where V2X standard is used for Intersection movement assist use-case. It has been realized in Brno City / Czech Republic where 80 pcs of cross intersections are controlled by V2X communication standard from public transport vehicles of municipality Brno. [46]

Spectrum allocation

Spectrum allocation for C-ITS in various countries is shown in the following table. Due to the standardization of V2X in 802.11p preceding C-V2X standardization in 3GPP, spectrum allocation was originally intended for the 802.11p based system. However, the regulations are technology neutral so that the deployment of C-V2X is not excluded.

In 2022, US Federal Courts told the FCC that it could reallocate 45 MHz of V2X spectrum to wireless and cellular carriers, citing years of no use by V2X constituents.

CountrySpectrum (MHz)Allocated bandwidth (MHz)
Australia5855 – 592570
China5905 - 592520
Europe5875 – 590530
Japan755.5-764.5 and 5770 – 58509 and 80
Korea5855 – 592570
Singapore5875 – 592550
USA5895 - 592530

Consideration in the transition period

The deployment of V2X technology (either C-V2X or 802.11p based products) will occur gradually over time. New cars will be equipped with either of the two technologies starting around 2020 and its proportion on the road is expected to increase gradually. The Volkswagen Golf 8th generation was the first passenger car to be fitted with V2X technology powered by NXP technology. [47] In the meantime, existing (legacy) vehicles will continue to exist on the road. This implies that the V2X capable vehicles will need to co-exist with non-V2X (legacy) vehicles or with V2X vehicles of incompatible technology.

The main obstacles to its adoption are legal issues and the fact that, unless almost all vehicles adopt it, its effectiveness is limited. [48] British weekly The Economist argued in 2016 that autonomous driving is more driven by regulations than by technology. [49]

However, a 2017 study [6] indicated that there are benefits in reducing traffic accidents even during the transitional period in which the technology is being adopted in the market.

Further reading

Many books and papers have been written in the topic:

See also

Related Research Articles

<span class="mw-page-title-main">Wireless network</span> Computer network not fully connected by cables

A wireless network is a computer network that uses wireless data connections between network nodes. Wireless networking allows homes, telecommunications networks and business installations to avoid the costly process of introducing cables into a building, or as a connection between various equipment locations. Admin telecommunications networks are generally implemented and administered using radio communication. This implementation takes place at the physical level (layer) of the OSI model network structure.

4G is the fourth generation of broadband cellular network technology, succeeding 3G and preceding 5G. A 4G system must provide capabilities defined by ITU in IMT Advanced. Potential and current applications include amended mobile web access, IP telephony, gaming services, high-definition mobile TV, video conferencing, and 3D television.

<span class="mw-page-title-main">Telematics</span> Interdisciplinary field that encompasses telecommunications

Telematics is an interdisciplinary field encompassing telecommunications, vehicular technologies, electrical engineering, and computer science. Telematics can involve any of the following:

Dedicated short-range communications (DSRC) is a technology for direct wireless exchange of vehicle-to-everything (V2X) and other intelligent transportation systems (ITS) data between vehicles, other road users, and roadside infrastructure. DSRC, which can be used for both one- and two-way data exchanges, uses channels in the licensed 5.9 GHz band. DSRC is based on IEEE 802.11p.

The IEEE 802.21 refers to Media Independent Handoff (MIH) and is an IEEE standard published in 2008. The standard supports algorithms enabling seamless handover between wired and wireless networks of the same type as well as handover between different wired and wireless network types also called Media independent handover (MIH) or vertical handover. The vertical handover was first introduced by Mark Stemn and Randy Katz at U C Berkeley. The standard provides information to allow handing over to and from wired 802.3 networks to wireless 802.11, 802.15, 802.16, 3GPP and 3GPP2 networks through different handover mechanisms.

<span class="mw-page-title-main">Orthogonal frequency-division multiple access</span> Multi-user version of OFDM digital modulation

Orthogonal frequency-division multiple access (OFDMA) is a multi-user version of the popular orthogonal frequency-division multiplexing (OFDM) digital modulation scheme. Multiple access is achieved in OFDMA by assigning subsets of subcarriers to individual users. This allows simultaneous low-data-rate transmission from several users.

IEEE 802.11p is an approved amendment to the IEEE 802.11 standard to add wireless access in vehicular environments (WAVE), a vehicular communication system. It defines enhancements to 802.11 required to support intelligent transportation systems (ITS) applications. This includes data exchange between high-speed vehicles and between the vehicles and the roadside infrastructure, so called vehicle-to-everything (V2X) communication, in the licensed ITS band of 5.9 GHz (5.85–5.925 GHz). IEEE 1609 is a higher layer standard based on the IEEE 802.11p. It is also the basis of a European standard for vehicular communication known as ETSI ITS-G5.

Vehicular communication systems are computer networks in which vehicles and roadside units are the communicating nodes, providing each other with information, such as safety warnings and traffic information. They can be effective in avoiding accidents and traffic congestion. Both types of nodes are dedicated short-range communications (DSRC) devices. DSRC works in 5.9 GHz band with bandwidth of 75 MHz and approximate range of 300 metres (980 ft). Vehicular communications is usually developed as a part of intelligent transportation systems (ITS).

Vehicular ad hoc networks (VANETs) are created by applying the principles of mobile ad hoc networks (MANETs) – the spontaneous creation of a wireless network of mobile devices – to the domain of vehicles. VANETs were first mentioned and introduced in 2001 under "car-to-car ad-hoc mobile communication and networking" applications, where networks can be formed and information can be relayed among cars. It was shown that vehicle-to-vehicle and vehicle-to-roadside communications architectures will co-exist in VANETs to provide road safety, navigation, and other roadside services. VANETs are a key part of the intelligent transportation systems (ITS) framework. Sometimes, VANETs are referred as Intelligent Transportation Networks. They are understood as having evolved into a broader "Internet of vehicles". which itself is expected to ultimately evolve into an "Internet of autonomous vehicles".

A wide variety of different wireless data technologies exist, some in direct competition with one another, others designed for specific applications. Wireless technologies can be evaluated by a variety of different metrics of which some are described in this entry.

Intelligent vehicular ad hoc networks (InVANETs) use WiFi IEEE 802.11p and effective communication between vehicles with dynamic mobility. Effective measures such as media communication between vehicles can be enabled as well methods to track automotive vehicles. InVANET is not foreseen to replace current mobile communication standards.

Communications access for land mobiles (CALM) is an initiative by the ISO TC 204/Working Group 16 to define a set of wireless communication protocols and air interfaces for a variety of communication scenarios spanning multiple modes of communications and multiple methods of transmissions in Intelligent Transportation System (ITS). The CALM architecture is based on an IPv6 convergence layer that decouples applications from the communication infrastructure. A standardized set of air interface protocols is provided for the best use of resources available for short, medium and long-range, safety critical communications, using one or more of several media, with multipoint (mesh) transfer.

International Mobile Telecommunications-Advanced are the requirements issued by the ITU Radiocommunication Sector (ITU-R) of the International Telecommunication Union (ITU) in 2008 for what is marketed as 4G mobile phone and Internet access service.

<span class="mw-page-title-main">5G</span> Broadband cellular network standard

In telecommunications, 5G is the fifth-generation technology standard for cellular networks, which cellular phone companies began deploying worldwide in 2019, and is the successor to 4G technology that provides connectivity to most current mobile phones.

A connected car is a car that can communicate bidirectionally with other systems outside of the car. This connectivity can be used to provide services to passengers or to support or enhance self-driving functionality. For safety-critical applications, it is anticipated that cars will also be connected using dedicated short-range communications (DSRC) or cellular radios, operating in the FCC-granted 5.9 GHz band with very low latency.

The Cooperative Adaptive Cruise Control (CACC) is an extension to the adaptive cruise control (ACC) concept using Vehicle-to-Everything (V2X) communication. CACC realises longitudinal automated vehicle control. In addition to the feedback loop used in the ACC, which uses Radar, Camera and/or LIDAR measurements to derive the range to the vehicle in front, the preceding vehicle's acceleration is used in a feed-forward loop. The preceding vehicle's acceleration is obtained from the Cooperative Awareness Messages it transmits using ETSI ITS-G5, DSRC / WAVE technology or LTE-V2X PC5 interface as part of the C-V2X technology. Generally, these messages are transmitted several times per second by future vehicles equipped with ITS capabilities.

<span class="mw-page-title-main">Bernhard Walke</span>

Bernhard H. Walke is a pioneer of mobile Internet access and professor emeritus at RWTH Aachen University in Germany. He is a driver of wireless and mobile 2G to 5G cellular radio networks technologies. In 1985, he proposed a local cellular radio network comprising technologies in use today in 2G, 4G and discussed for 5G systems. For example, self-organization of a radio mesh network, integration of circuit- and packet switching, de-centralized radio resource control, TDMA/spread spectrum data transmission, antenna beam steering, spatial beam multiplexing, interference coordination, S-Aloha based multiple access and demand assigned traffic channels, mobile broadband transmission using mm-waves, and multi-hop communication.

LTE-WLAN aggregation (LWA) is a technology defined by the 3GPP. In LWA, a mobile handset supporting both LTE and Wi-Fi may be configured by the network to utilize both links simultaneously. It provides an alternative method of using LTE in unlicensed spectrum, which unlike LAA/LTE-U can be deployed without hardware changes to the network infrastructure equipment and mobile devices, while providing similar performance to that of LAA. Unlike other methods of using LTE and WLAN simultaneously, LWA allows using both links for a single traffic flow and is generally more efficient, due to coordination at lower protocol stack layers.

The 5G Automotive Association (5GAA) is a corporate coalition to develop and promote standardized protocols for automotive vehicles utilizing 5G communications. It serves as a lobbying group for the European Union on behalf of its membership. Their interests are government investments in the widespread deployment of short-range 5G wireless technology dubbed Cellular V2X.

Cellular V2X (C-V2X) is a 3GPP standard for V2X applications such as self-driving cars. It is an alternative to 802.11p, the IEEE specified standard for V2V and other forms of V2X communications.

References

  1. "Vehicle-To-Vehicle Communication Technology For Light Vehicles" (PDF). www.google.com. p. e10. Retrieved 2019-12-02.
  2. "China to lead the global deployment of short-range V2X". futureiot.tech/. Retrieved 2024-02-13.
  3. Vehicle-to-Pedestrian (V2P) Communications for Safety
  4. 1 2 3 Alalewi, Ahmad; Dayoub, Iyad; Cherkaoui, Soumaya (2021). "On 5G-V2X Use Cases and Enabling Technologies: A Comprehensive Survey". IEEE Access. 9: 107710–107737. Bibcode:2021IEEEA...9j7710A. doi:10.1109/ACCESS.2021.3100472. hdl: 20.500.12210/55004 . ISSN   2169-3536. S2CID   236939427.
  5. "IEEE 802.11p-2010 - IEEE Standard for Information technology-- Local and metropolitan area networks-- Specific requirements-- Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 6: Wireless Access in Vehicular Environments". www.google.com. Retrieved 2021-01-08.
  6. 1 2 3 4 5 An assessment of LTE-V2X (PC5) and 802.11p direct communications technologies for improved road safety in the EU.(http://5gaa.org/wp-content/uploads/2017/12/5GAA-Road-safety-FINAL2017-12-05.pdf)
  7. 1 2 3 White Paper on ITS spectrum utilization in the Asia Pacific Region (http://5gaa.org/wp-content/uploads/2018/07/5GAA_WhitePaper_ITS-spectrum-utilization-in-the-Asia-Pacific-Region_FINAL_160718docx.pdf)
  8. C-ITS: Three observations on LTE-V2X and ETSI ITS-G5—A comparison (https://www.nxp.com/docs/en/white-paper/CITSCOMPWP.pdf)
  9. Zheng, Kan; Zheng, Qiang; Chatzimisios, Periklis; Xiang, Wei; Zhou, Yiqing (2015). "Heterogeneous Vehicular Networking: A Survey on Architecture, Challenges, and Solutions". IEEE Communications Surveys & Tutorials. 17 (4): 2377–2396. doi:10.1109/COMST.2015.2440103. S2CID   24982325.
  10. "Konec honiček a střelby do kol. No more chases and wheel-shots". iRozhlas.cz. 25 February 2024.
  11. EN 302 663 Intelligent Transport Systems (ITS); Access layer specification for Intelligent Transport Systems operating in the 5 GHz frequency band (http://www.etsi.org/deliver/etsi_en/302600_302699/302663/01.02.00_20/en_302663v010200a.pdf)
  12. "C-ITS: Cooperative Intelligent Transport Systems and Services". www.car-2-car.org.
  13. The Case for Cellular V2X for Safety and Cooperative Driving (http://5gaa.org/wp-content/uploads/2017/10/5GAA-whitepaper-23-Nov-2016.pdf)
  14. Toghi, Behrad; Saifuddin, Md; Fallah, Yaser; Hossein, Nourkhiz Mahjoub; M O, Mughal; Jayanthi, Rao; Sushanta, Das (5–7 December 2018). "Multiple Access in Cellular V2X: Performance Analysis in Highly Congested Vehicular Networks". 2018 IEEE Vehicular Networking Conference (VNC). pp. 1–8. arXiv: 1809.02678 . Bibcode:2018arXiv180902678T. doi:10.1109/VNC.2018.8628416. ISBN   978-1-5386-9428-2. S2CID   52185034.
  15. Mosavat, H.; et al. (2021). "Distributed and Adaptive Reservation MAC Protocol for Beaconing in Vehicular Networks". IEEE Transactions on Mobile Computing. 20 (10): 2936–2948. doi:10.1109/TMC.2020.2992045. S2CID   218931192.
  16. Gu, X.; et al. (2022). "Markov Analysis of C-V2X Resource Reservation for Vehicle Platooning". 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring). pp. 1–5. doi:10.1109/VTC2022-Spring54318.2022.9860899. ISBN   978-1-6654-8243-1. S2CID   251848411.
  17. 3GPP Release 15 (https://www.3gpp.org/release-15)
  18. 1 2 NHTSA: Vehicle-to-Vehicle Communications: Readiness of V2V Technology for Application (http://www.nhtsa.gov/staticfiles/rulemaking/pdf/V2V/Readiness-of-V2V-Technology-for-Application-812014.pdf Archived 2018-11-15 at the Wayback Machine )
  19. ETSI TR 102638: Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Definitions (http://www.etsi.org/deliver/etsi_tr%5C102600_102699%5C102638%5C01.01.01_60%5Ctr_102638v010101p.pdf)
  20. SAE J2945/x family of standards: (http://standards.sae.org/wip/j2945/ Archived 2014-03-10 at the Wayback Machine )
  21. Xie, Xiao-Feng; Wang, Zun-Jing (2018). "SIV-DSS: Smart in-vehicle decision support system for driving at signalized intersections with V2I communication". Transportation Research Part C. 90: 181–197. doi:10.1016/j.trc.2018.03.008.
  22. Kotilainen, Ilkka; et al. (2022). "Arctic Challenge Project's Final Report: Road Transport Automation in Snowy and Icy Conditions". Väyläviraston Tutkimuksia. Retrieved 4 September 2022.
  23. Zhao, C.; et al. (2021). "Vehicle Platooning with Non-ideal Communication Networks". IEEE Transactions on Vehicular Technology. 70 (1): 18–32. doi:10.1109/TVT.2020.3046165. S2CID   231920442.
  24. Zhao, C.; et al. (2021). "Stability Analysis of Vehicle Platooning with Limited Communication Range and Random Packet Losses". IEEE Internet of Things Journal. 8 (1): 262–277. doi:10.1109/JIOT.2020.3004573. S2CID   226764237.
  25. 1609.x family of standards (http://odysseus.ieee.org/query.html?qt=1609.&charset=iso-8859-1&style=standard&col=sa)
  26. ETSI TR 101 607; Intelligent Transport Systems (ITS); Cooperative ITS (C-ITS); Release 1 (http://www.etsi.org/deliver/etsi_tr/101600_101699/101607/01.01.01_60/tr_101607v010101p.pdf)
  27. ARIB STD-T109; 700 MHz BAND; INTELLIGENT TRANSPORT SYSTEMS: (http://www.arib.or.jp/english/html/overview/doc/5-STD-T109v1_2-E1.pdf)
  28. Recommendation ITU-R M.2084-0; Radio interface standards of vehicle-to-vehicle and vehicle-to-infrastructure communications for Intelligent Transport System applications (https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2084-0-201509-S!!PDF-E.pdf)
  29. Federal Communications Commission -Amendment of Parts 2 and 90 of the Commission's Rules to Allocate the 5.850-5.925 GHz Band to the Mobile Service for Dedicated Short Range Communications of Intelligent Transportation Services ET Docket No. 98-95 (https://apps.fcc.gov/edocs_public/attachmatch/FCC-99-305A1.doc)
  30. Safety Pilot Model Deployment Technical Fact Sheet (http://www.safercar.gov/staticfiles/safercar/connected/Technical_Fact_Sheet-Model_Deployment.pdf)
  31. Federal Motor Vehicle Safety Standards: Vehicle-to-Vehicle (V2V) Communications, Docket No. NHTSA–2014–0022 (http://www.nhtsa.gov/staticfiles/rulemaking/pdf/V2V/V2V-ANPRM_081514.pdf Archived 2017-04-28 at the Wayback Machine )
  32. "Vehicle to Vehicle Communications and Connected Roadways of the Future". Energy and Commerce Committee. Retrieved 2020-02-19.
  33. "Driving a Safer Tomorrow: Vehicle-to-Vehicle Communications and Connected Roadways of the Future". US Department of Transportation. 2017-03-08. Retrieved 2020-02-19.
  34. Brodkin, Jon (18 November 2020). "FCC takes spectrum from auto industry in plan to "supersize" Wi-Fi". Ars Technica.
  35. Gitlin, Jonathan M. (16 August 2022). "Court rules FCC is allowed to reassign 5.9 GHz bandwidth, killing V2X". Ars Technica.
  36. First version ETSI EN 302 571: Intelligent Transport Systems (ITS); Radiocommunications equipment operating in the 5 855 MHz to 5 925 MHz frequency band; Harmonized EN covering the essential requirements of article 3.2 of the R&TTE Directive (http://www.etsi.org/deliver/etsi_en/302500_302599/302571/01.01.01_60/en_302571v010101p.pdf)
  37. Here the 2014 version: Electromagnetic compatibility and Radio spectrum Matters (ERM); System Reference document (SRdoc); Technical characteristics for pan European harmonized communications equipment operating in the 5,855 GHz to 5,925 GHz range intended for road safety and traffic management, and for non-safety related ITS applications (http://www.etsi.org/deliver/etsi_tr/103000_103099/103083/01.01.01_60/tr_103083v010101p.pdf)
  38. 2008/671/EC: Commission Decision of 5 August 2008 on the harmonised use of radio spectrum in the 5875 - 5905 MHz frequency band for safety-related applications of Intelligent Transport Systems (ITS)
  39. Directive 2010/40/EU of the European Parliament and of the Council of 7 July 2010 on the framework for the deployment of Intelligent Transport Systems in the field of road transport and for interfaces with other modes of transport
  40. C-ITS Deployment Platform – Final Report, January 2016 (http://ec.europa.eu/transport/themes/its/doc/c-its-platform-final-report-january-2016.pdf)
  41. Intelligent Transport Systems (ITS); Mitigation techniques to avoid interference between European CEN Dedicated Short Range Communication (CEN DSRC) equipment and Intelligent Transport Systems (ITS) operating in the 5 GHz frequency range (http://www.etsi.org/deliver/etsi_ts/102700_102799/102792/01.02.01_60/ts_102792v010201p.pdf)
  42. 5G for Europe: An Action Plan – COM (2016) 588, footnote 29 (http://ec.europa.eu/newsroom/dae/document.cfm?doc_id=17131)
  43. 5G Global Developments – SWD (2016) 306, page 9 (http://ec.europa.eu/newsroom/dae/document.cfm?doc_id=17132)
  44. Amsterdam Declaration – Cooperation in the field of connected and automated driving (https://english.eu2016.nl/binaries/eu2016-en/documents/publications/2016/04/14/declaration-of-amsterdam/2016-04-08-declaration-of-amsterdam-final-format-3.pdf Archived 2017-03-01 at the Wayback Machine )
  45. For C-ROADS see: Connecting Europe Facility – Transport 2015 Call for Proposals – Proposal for the Selection of Projects, pages 119-127 (https://ec.europa.eu/inea/sites/inea/files/20160712_cef_tran_brochure_web.pdf)
  46. "Public transportation preference using V2X". 2020-03-31.
  47. Abuelsamid, Sam. "Volkswagen Adds 'Vehicle-To-Everything' Communications To Revamped Golf With NXP Chips". Forbes. Retrieved 2020-03-31.
  48. Junko Yoshida (2013-09-17). "Counter Argument: 3 Reasons We Need V2X" . Retrieved 2018-08-19.
  49. "Uberworld". Economist. 3 September 2016. Retrieved 2018-08-19.
  50. Y. Ni, L. Cai, J. He, A. Vinel, Y. Li, H. Mosavat-Jahromi, and J. Pan, "Toward Reliable and Scalable Internet-of-Vehicles: Performance Analysis and Resource Management," Proceedings of The IEEE, 108(2):324-340, Feb. 2020.