Chiral thin-layer chromatography

Last updated

Enantiosepatation of racemic Baclofen (left). Pure (S)-enantiomer (right). Photo of a TLC plate Baclofen.tif
Enantiosepatation of racemic Baclofen (left). Pure (S)-enantiomer (right).

Chiral thin-layer chromatography is a variant of liquid chromatography that is employed for the separation of enantiomers. It is necessary to use either

The chiral stationary phase can be prepared by mixing chirally pure reagents such as L-amino acid, or brucine, or a chiral ligand exchange reagent with silica gel slurry, [2] [3] or by impregnation of the TLC plate in the solution of a chiral reagent. [4]

The principle can also be applied to chemically modify the stationary phase before making the plate via bonding of the chiral moieties of interest to the reactive groups of the layer material. [5] [6]

See also

Related Research Articles

In chemical analysis, chromatography is a laboratory technique for the separation of a mixture into its components. The mixture is dissolved in a fluid solvent called the mobile phase, which carries it through a system on which a material called the stationary phase is fixed. Because the different constituents of the mixture tend to have different affinities for the stationary phase and are retained for different lengths of time depending on their interactions with its surface sites, the constituents travel at different apparent velocities in the mobile fluid, causing them to separate. The separation is based on the differential partitioning between the mobile and the stationary phases. Subtle differences in a compound's partition coefficient result in differential retention on the stationary phase and thus affect the separation.

<span class="mw-page-title-main">High-performance liquid chromatography</span> Technique in analytical chemistry

High-performance liquid chromatography (HPLC), formerly referred to as high-pressure liquid chromatography, is a technique in analytical chemistry used to separate, identify, and quantify specific components in mixtures. The mixtures can originate from food, chemicals, pharmaceuticals, biological, environmental and agriculture, etc, which have been dissolved into liquid solutions.

<span class="mw-page-title-main">Chirality (chemistry)</span> Geometric property of some molecules and ions

In chemistry, a molecule or ion is called chiral if it cannot be superposed on its mirror image by any combination of rotations, translations, and some conformational changes. This geometric property is called chirality. The terms are derived from Ancient Greek χείρ (cheir) 'hand'; which is the canonical example of an object with this property.

<span class="mw-page-title-main">Paper chromatography</span> Separation of coloured chemicals on paper

Paper chromatography is an analytical method used to separate coloured chemicals or substances. It is now primarily used as a teaching tool, having been replaced in the laboratory by other chromatography methods such as thin-layer chromatography (TLC).

<span class="mw-page-title-main">Enantioselective synthesis</span> Chemical reaction(s) which favor one chiral isomer over another

Enantioselective synthesis, also called asymmetric synthesis, is a form of chemical synthesis. It is defined by IUPAC as "a chemical reaction in which one or more new elements of chirality are formed in a substrate molecule and which produces the stereoisomeric products in unequal amounts."

<span class="mw-page-title-main">Column chromatography</span> Method to isolate a compound in a mixture

Column chromatography in chemistry is a chromatography method used to isolate a single chemical compound from a mixture. Chromatography is able to separate substances based on differential adsorption of compounds to the adsorbent; compounds move through the column at different rates, allowing them to be separated into fractions. The technique is widely applicable, as many different adsorbents can be used with a wide range of solvents. The technique can be used on scales from micrograms up to kilograms. The main advantage of column chromatography is the relatively low cost and disposability of the stationary phase used in the process. The latter prevents cross-contamination and stationary phase degradation due to recycling. Column chromatography can be done using gravity to move the solvent, or using compressed gas to push the solvent through the column.

<span class="mw-page-title-main">Ion chromatography</span> Separates ions and polar molecules

Ion chromatography is a form of chromatography that separates ions and ionizable polar molecules based on their affinity to the ion exchanger. It works on almost any kind of charged molecule—including small inorganic anions, large proteins, small nucleotides, and amino acids. However, ion chromatography must be done in conditions that are one pH unit away from the isoelectric point of a protein.

1,1-Bi-2-naphthol (BINOL) is an organic compound that is often used as a ligand for transition-metal catalysed asymmetric synthesis. BINOL has axial chirality and the two enantiomers can be readily separated and are stable toward racemisation. The specific rotation of the two enantiomers is 35.5° (c = 1 in THF), with the R enantiomer being the dextrorotary one. BINOL is a precursor for another chiral ligand called BINAP. The volumetric mass density of the two enantiomers is 0.62 g cm−3.

<span class="mw-page-title-main">Thin-layer chromatography</span> Technique used to separate non-volatile mixtures

Thin-layer chromatography (TLC) is a chromatography technique that separates components in non-volatile mixtures.

Chiral column chromatography is a variant of column chromatography that is employed for the separation of chiral compounds, i.e. enantiomers, in mixtures such as racemates or related compounds. The chiral stationary phase (CSP) is made of a support, usually silica based, on which a chiral reagent or a macromolecule with numerous chiral centers is bonded or immobilized.

<span class="mw-page-title-main">Chiral derivatizing agent</span> Reagent for converting a chemical compound to a chiral derivative

In analytical chemistry, a chiral derivatizing agent (CDA), also known as a chiral resolving reagent, is a derivatization reagent that is a chiral auxiliary used to convert a mixture of enantiomers into diastereomers in order to analyze the quantities of each enantiomer present and determine the optical purity of a sample. Analysis can be conducted by spectroscopy or by chromatography. Some analytical techniques such as HPLC and NMR, in their most commons forms, cannot distinguish enantiomers within a sample, but can distinguish diastereomers. Therefore, converting a mixture of enantiomers to a corresponding mixture of diastereomers can allow analysis. The use of chiral derivatizing agents has declined with the popularization of chiral HPLC. Besides analysis, chiral derivatization is also used for chiral resolution, the actual physical separation of the enantiomers.

Reversed-phase liquid chromatography (RP-LC) is a mode of liquid chromatography in which non-polar stationary phase and polar mobile phases are used for the separation of organic compounds. The vast majority of separations and analyses using high-performance liquid chromatography (HPLC) in recent years are done using the reversed phase mode. In the reversed phase mode, the sample components are retained in the system the more hydrophobic they are.

<span class="mw-page-title-main">Two-dimensional chromatography</span>

Two-dimensional chromatography is a type of chromatographic technique in which the injected sample is separated by passing through two different separation stages. Two different chromatographic columns are connected in sequence, and the effluent from the first system is transferred onto the second column. Typically the second column has a different separation mechanism, so that bands that are poorly resolved from the first column may be completely separated in the second column. Alternately, the two columns might run at different temperatures. During the second stage of separation the rate at which the separation occurs must be faster than the first stage, since there is still only a single detector. The plane surface is amenable to sequential development in two directions using two different solvents.

<span class="mw-page-title-main">High-performance thin-layer chromatography</span> Advanced technique to separate non-volatile substances

High-performance thin-layer chromatography (HPTLC) serves as an extension of thin-layer chromatography (TLC), offering robustness, simplicity, speed, and efficiency in the quantitative analysis of compounds. This TLC-based analytical technique enhances compound resolution for quantitative analysis. Some of these improvements involve employing higher-quality TLC plates with finer particle sizes in the stationary phase, leading to improved resolution. Additionally, the separation can be further refined through repeated plate development using a multiple development device. As a result, HPTLC provides superior resolution and lower Limit of Detection (LODs).

Partition chromatography theory and practice was introduced through the work and publications of Archer Martin and Richard Laurence Millington Synge during the 1940s. They would later receive the 1952 Nobel Prize in Chemistry "for their invention of partition chromatography".

<span class="mw-page-title-main">Countercurrent chromatography</span>

Countercurrent chromatography is a form of liquid–liquid chromatography that uses a liquid stationary phase that is held in place by inertia of the molecules composing the stationary phase accelerating toward the center of a centrifuge due to centripetal force and is used to separate, identify, and quantify the chemical components of a mixture. In its broadest sense, countercurrent chromatography encompasses a collection of related liquid chromatography techniques that employ two immiscible liquid phases without a solid support. The two liquid phases come in contact with each other as at least one phase is pumped through a column, a hollow tube or a series of chambers connected with channels, which contains both phases. The resulting dynamic mixing and settling action allows the components to be separated by their respective solubilities in the two phases. A wide variety of two-phase solvent systems consisting of at least two immiscible liquids may be employed to provide the proper selectivity for the desired separation.

Thermoresponsive polymers can be used as stationary phase in liquid chromatography. Here, the polarity of the stationary phase can be varied by temperature changes, altering the power of separation without changing the column or solvent composition. Thermally related benefits of gas chromatography can now be applied to classes of compounds that are restricted to liquid chromatography due to their thermolability. In place of solvent gradient elution, thermoresponsive polymers allow the use of temperature gradients under purely aqueous isocratic conditions. The versatility of the system is controlled not only through changing temperature, but through the addition of modifying moieties that allow for a choice of enhanced hydrophobic interaction, or by introducing the prospect of electrostatic interaction. These developments have already introduced major improvements to the fields of hydrophobic interaction chromatography, size exclusion chromatography, ion exchange chromatography, and affinity chromatography separations as well as pseudo-solid phase extractions.

<span class="mw-page-title-main">Emanuel Gil-Av</span> Russian-Israeli chemist

Emanuel Gil-Av (Zimkin) was an Israeli chemist. The main emphasis of his work constituted chiral chromatography for the analytical separation of enantiomers.

Chiral analysis refers to the quantification of component enantiomers of racemic drug substances or pharmaceutical compounds. Other synonyms commonly used include enantiomer analysis, enantiomeric analysis, and enantioselective analysis. Chiral analysis includes all analytical procedures focused on the characterization of the properties of chiral drugs. Chiral analysis is usually performed with chiral separation methods where the enantiomers are separated on an analytical scale and simultaneously assayed for each enantiomer.

<span class="mw-page-title-main">Ravi Bhushan</span> Indian chemist (born 1953)

Ravi Bhushan was a Professor of Chemistry at Indian Institute of Technology Roorkee who worked in the areas of natural products chemistry, protein chemistry, and chiral analysis by liquid chromatography.

References

  1. Singh, Manisha; Malik, Poonam; Bhushan, Ravi (2016). "Resolution of enantiomers of (RS)-baclofen by ligand exchange thin layer chromatography". Journal of Chromatographic Science. 54 (5): 842–846. doi: 10.1093/chromsci/bmw014 . PMC   4890457 . PMID   26896346.
  2. Bhushan, Ravi; Martens, Jürgen (1997). "Direct Resolution of Enantiomers by Impregnated TLC". Biomedical Chromatography. 11 (5): 280–285. doi:10.1002/(SICI)1099-0801(199709)11:5<280::AID-BMC697>3.0.CO;2-U. PMID   9376709.
  3. Sajewicz, Mieczysław; Piętka, Robert; Kowalska, Teresa (2004). "Chiral Separation of (S)-(+)- and (R)-(−)-Ibuprofen by Thin-Layer Chromatography. An Improved Analytical Procedure". Journal of Planar Chromatography: Modern TLC. 17 (2): 173–176. doi:10.1556/JPC.17.2004.3.3. S2CID   94295876.
  4. Günther, Kurt; Martens, Jürgen; Schickedanz, Maren (1984). "Thin-Layer Chromatographic Enantiomeric Resolution via Ligand Exchange". Angewandte Chemie International Edition in English . 23 (7): 506. doi:10.1002/anie.198405061.
  5. Ala, Alak; Armstrong, Daniel W (1986). "Thin-layer Chromatographic Separation of Optical, Geometrical, and Structural Isomers". Analytical Chemistry. 58 (3): 582–584. doi:10.1021/ac00294a020.
  6. Del Bubba, Massimo; Checchini, Leonardo; Lepri, Luciano (2012). "Thin-layer chromatography enantioseparations on chiral stationary phases: a review". Analytical and Bioanalytical Chemistry. 405 (2–3): 533–554. doi:10.1007/s00216-012-6514-5. PMID   23161065. S2CID   22147187.