Clouds and the Earth's Radiant Energy System

Last updated
Artist representation of CERES instruments scanning Earth in Rotating Azimuth Plane mode. Ceres-raps-scan.jpg
Artist representation of CERES instruments scanning Earth in Rotating Azimuth Plane mode.

Clouds and the Earth's Radiant Energy System (CERES) is an on-going NASA climatological experiment from Earth orbit. [1] [2] The CERES are scientific satellite instruments, part of the NASA's Earth Observing System (EOS), designed to measure both solar-reflected and Earth-emitted radiation from the top of the atmosphere (TOA) to the Earth's surface. Cloud properties are determined using simultaneous measurements by other EOS instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS). [3] Results from the CERES and other NASA missions, such as the Earth Radiation Budget Experiment (ERBE), [4] could enable nearer to real-time tracking of Earth's energy imbalance (EEI) and better understanding of the role of clouds in global climate change. [1] [5]

Contents

Incoming, top-of-atmosphere (TOA) shortwave flux radiation, shows energy received from the sun (Jan 26–27, 2012).
Outgoing, longwave flux radiation at the top-of-atmosphere (Jan 26–27, 2012). Heat energy radiated from Earth (in watts per square meter) is shown in shades of yellow, red, blue and white. The brightest-yellow areas are the hottest and are emitting the most energy out to space, while the dark blue areas and the bright white clouds are much colder, emitting the least energy.
Cumulative planetary heat content anomaly of Earth since year 2000 as observed by CERES CERES Earth Heat Content Anomaly.jpg
Cumulative planetary heat content anomaly of Earth since year 2000 as observed by CERES

Scientific goals

CERES experiment has four main objectives:

Each CERES instrument is a radiometer which has three channels – a shortwave (SW) channel to measure reflected sunlight in 0.2–5 μm region, a channel to measure Earth-emitted thermal radiation in the 8–12 μm "window" or "WN" region, and a Total channel to measure entire spectrum of outgoing Earth's radiation (>0.2 μm). The CERES instrument was based on the successful Earth Radiation Budget Experiment which used three satellites to provide global energy budget measurements from 1984 to 1993. [6]

Missions

First launch

The first CERES instrument Proto-Flight Module (PFM) was launched aboard the NASA Tropical Rainfall Measuring Mission (TRMM) in November 1997 from Japan. However, this instrument failed to operate after 8 months due to an on-board circuit failure.

CERES on the EOS and JPSS mission satellites

An additional six CERES instruments were launched on the Earth Observing System and the Joint Polar Satellite System. The Terra satellite, launched in December 1999, carried two (Flight Module 1 (FM1) and FM2) and the Aqua satellite, launched in May 2002, carried two more (FM3 and FM4). A fifth instrument (FM5) was launched on the Suomi NPP satellite in October 2011 and a sixth (FM6) on NOAA-20 in November 2017. With the failure of the PFM on TRMM and the 2005 loss of the SW channel of FM4 on Aqua, there are five of the CERES Flight Modules that are fully operational as of 2017. [7] [8]

Radiation Budget Instruments

The measurements of the CERES instruments was to be furthered by the Radiation Budget Instrument (RBI) to be launched on Joint Polar Satellite System-2 (JPSS-2) in 2021, JPSS-3 in 2026, and JPSS-4 in 2031. [8] The project was cancelled on January 26, 2018; NASA cited technical, cost, and schedule issues and the impact of anticipated RBI cost growth on other programs. [9]

Libera

NASA announced in February 2020 its selection of the Libera instrument to launch on JPSS-3 by the end of 2027. [10] Libera is planned to provide data continuity and updated capabilities. LASP is the lead instrument developer. [11]

Operating modes

CERES operates in three scanning modes: across the satellite ground track (cross-track), along the direction of the satellite ground track (along-track), and in a Rotating Azimuth Plane (RAP). In RAP mode, the radiometers scan in elevation as they rotate in azimuth, thus acquiring radiance measurement from a wide range of viewing angles. Until February 2005, on Terra and Aqua satellites one of CERES instruments scanned in cross-track mode while the other was in RAP or along-track mode. The instrument operating in RAP scanning mode took two days of along-track data every month. However the multi-angular CERES data allowed to derive new models which account for anisotropy of the viewed scene, and allow TOA radiative flux retrieval with enhanced precision. [12]

All CERES instruments are in Sun-synchronous orbit. Comparable geostationary data between 60°S and 60°N are also applied within "balanced and filled" data products to provide a diurnally complete representation of the radiation budget and to account for cloud changes between CERES observation times. [13]

Calibration methods

The CERES instruments were designed to provide enhanced measurement stability and precision, however achieving and ensuring absolute accuracy over time was also known to remain as an ongoing challenge. [14] Despite the more advanced capability of CERES to monitor Earth's TOA radiative fluxes globally and with relative accuracy, the only practical way to estimate the absolute magnitude of EEI (as of year 2020) is through an inventory of the changes of energy in the climate system. [15] Consequently, an important constraint within CERES data products has been the anchoring of EEI at one point in time to a value which corresponds to several years of ARGO data. [13]

Ground absolute calibration

For a climate data record (CDR) mission like CERES, accuracy is of high importance and achieved for pure infrared nighttime measurements by use of a ground laboratory SI traceable blackbody to determine total and WN channel radiometric gains. This however was not the case for CERES solar channels such as SW and solar portion of the Total telescope, which have no direct un-broken chain to SI traceability. This is because CERES solar responses were measured on ground using lamps whose output energy were estimated by a cryo-cavity reference detector, which used a silver Cassegrain telescope identical to CERES devices to match the satellite instrument field of view. The reflectivity of this telescope built and used since the mid-1990s was never actually measured, estimated [16] only based on witness samples (see slide 9 of Priestley et al. (2014) [17] ). Such difficulties in ground calibration, combined with suspected on-ground contamination events [18] have resulted in the need to make unexplained ground to flight changes in SW detector gains as big as 8%, [19] simply to make the ERB data seem somewhat reasonable to climate science (note that CERES currently claims [14] a one sigma SW absolute accuracy of 0.9%).

In-flight calibration

CERES spatial resolution at nadir view (equivalent diameter of the footprint) is 10 km for CERES on TRMM, and 20 km for CERES on Terra and Aqua satellites. Perhaps of greater importance for missions such as CERES is calibration stability, or the ability to track and partition instrumental changes from Earth data so it tracks true climate change with confidence. CERES onboard calibration sources intended to achieve this for channels measuring reflected sunlight include solar diffusers and tungsten lamps. However the lamps have very little output in the important ultraviolet wavelength region where degradation is greatest and they have been seen to drift in energy by over 1.4% in ground tests, without a capability to monitor them on-orbit (Priestley et al. (2001) [20] ). The solar diffusers have also degraded greatly in orbit such that they have been declared unusable by Priestley et al. (2011). [21] A pair of black body cavities that can be controlled at different temperatures are used for the Total and WN channels, but these have not been proved stable to better than 0.5%/decade. [18] Cold space observations and internal calibration are performed during normal Earth scans.

Intercalibration

Data is compared between CERES instruments on different mission satellites, as well as compared to scan reference data from accompanying spectroradiometers (e.g. MODIS on Aqua). The planned CLARREO Pathfinder mission aims to provide a state-of-the-art reference standard for several existing EOS instruments including CERES. [14]

A study of annual changes to Earth's energy imbalance (EEI) spanning 2005-2019 showed good agreement between the CERES observation and EEI inferred from in-situ measurements of ocean heat uptake by the Argo float network. [22] A concurrent pair of studies measuring global ocean heat uptake, ice melting and sea level rise with a combination of space altimetry and gravimetry suggested similar agreements. [23] [24]

See also

Related Research Articles

<span class="mw-page-title-main">Greenhouse effect</span> Atmospheric phenomenon causing planetary warming

The greenhouse effect occurs when greenhouse gases in a planet's atmosphere insulate the planet from losing heat to space, raising its surface temperature. Surface heating can happen from an internal heat source as in the case of Jupiter, or from its host star as in the case of the Earth. In the case of Earth, the Sun emits shortwave radiation (sunlight) that passes through greenhouse gases to heat the Earth's surface. In response, the Earth's surface emits longwave radiation that is mostly absorbed by greenhouse gases. The absorption of longwave radiation prevents it from reaching space, reducing the rate at which the Earth can cool off.

<span class="mw-page-title-main">Geostationary Earth Radiation Budget</span>

The Geostationary Earth Radiation Budget (GERB) is an instrument aboard EUMETSAT's Meteosat Second Generation geostationary satellites designed to make accurate measurements of the Earth radiation budget.

<span class="mw-page-title-main">Roy Spencer (meteorologist)</span>

Roy Warren Spencer is an American meteorologist. He is a principal research scientist at the University of Alabama in Huntsville, and the U.S. Science Team leader for the Advanced Microwave Scanning Radiometer (AMSR-E) on NASA's Aqua satellite. He has served as senior scientist for climate studies at NASA's Marshall Space Flight Center. He is known for his satellite-based temperature monitoring work, for which he was awarded the American Meteorological Society's Special Award. Spencer disagrees with the scientific consensus that most global warming in the past 50 years is the result of human activity, instead believing that anthropogenic greenhouse gas emissions have caused some warming, but that influence is small compared to natural variations in global average cloud cover.

<span class="mw-page-title-main">Radiative forcing</span> Difference between solar irradiance absorbed by the Earth and energy radiated back to space

Radiative forcing is a concept used in climate science to quantify the change in energy balance in Earth's atmosphere. Various factors contribute to this change in energy balance, such as concentrations of greenhouse gases and aerosols, and changes in surface albedo and solar irradiance. In more technical terms, it is defined as "the change in the net, downward minus upward, radiative flux due to a change in an external driver of climate change." These external drivers are distinguished from feedbacks and variability that are internal to the climate system, and that further influence the direction and magnitude of imbalance. Radiative forcing on Earth is meaningfully evaluated at the tropopause and at the top of the stratosphere. It is quantified in units of watts per square meter, and often summarized as an average over the total surface area of the globe.

<span class="mw-page-title-main">Terra (satellite)</span> NASA climate research satellite

Terra is a multi-national scientific research satellite operated by NASA in a Sun-synchronous orbit around the Earth. It takes simultaneous measurements of Earth's atmosphere, land, and water to understand how Earth is changing and to identify the consequences for life on Earth. It is the flagship of the Earth Observing System (EOS) and the first satellite of the system which was followed by Aqua and Aura. Terra was launched in 1999.

The Earth Observing System (EOS) is a program of NASA comprising a series of artificial satellite missions and scientific instruments in Earth orbit designed for long-term global observations of the land surface, biosphere, atmosphere, and oceans. Since the early 1970s, NASA has been developing its Earth Observing System, launching a series of Landsat satellites in the decade. Some of the first included passive microwave imaging in 1972 through the Nimbus 5 satellite. Following the launch of various satellite missions, the conception of the program began in the late 1980s and expanded rapidly through the 1990s. Since the inception of the program, it has continued to develop, including; land, sea, radiation and atmosphere. Collected in a system known as EOSDIS, NASA uses this data in order to study the progression and changes in the biosphere of Earth. The main focus of this data collection surrounds climatic science. The program is the centrepiece of NASA's Earth Science Enterprise.

<span class="mw-page-title-main">Aqua (satellite)</span> NASA scientific research satellite

Aqua is a NASA scientific research satellite in orbit around the Earth, studying the precipitation, evaporation, and cycling of water. It is the second major component of the Earth Observing System (EOS) preceded by Terra and followed by Aura.

<span class="mw-page-title-main">Earth's energy budget</span> Accounting of the energy flows which determine Earths surface temperature and drive its climate

Earth's energy budget accounts for the balance between the energy that Earth receives from the Sun and the energy the Earth loses back into outer space. Smaller energy sources, such as Earth's internal heat, are taken into consideration, but make a tiny contribution compared to solar energy. The energy budget also accounts for how energy moves through the climate system. The Sun heats the equatorial tropics more than the polar regions. Therefore, the amount of solar irradiance received by a certain region is unevenly distributed. As the energy seeks equilibrium across the planet, it drives interactions in Earth's climate system, i.e., Earth's water, ice, atmosphere, rocky crust, and all living things. The result is Earth's climate.

<span class="mw-page-title-main">Tropical Rainfall Measuring Mission</span> Joint space mission between NASA and JAXA

The Tropical Rainfall Measuring Mission (TRMM) was a joint space mission between NASA and JAXA designed to monitor and study tropical rainfall. The term refers to both the mission itself and the satellite that the mission used to collect data. TRMM was part of NASA's Mission to Planet Earth, a long-term, coordinated research effort to study the Earth as a global system. The satellite was launched on 27 November 1997 from the Tanegashima Space Center in Tanegashima, Japan. TRMM operated for 17 years, including several mission extensions, before being decommissioned on 15 April 2015. TRMM re-entered Earth's atmosphere on 16 June 2015.

<span class="mw-page-title-main">Earth Radiation Budget Satellite</span> Earth Observation Satellite (1984-2023)

The Earth Radiation Budget Satellite (ERBS) was a NASA scientific research satellite. The satellite was one of three satellites in NASA's research program, named Earth Radiation Budget Experiment (ERBE), to investigate the Earth's radiation budget. The satellite also carried an instrument that studied stratospheric aerosol and gases.

<span class="mw-page-title-main">Outgoing longwave radiation</span> Energy transfer mechanism which enables planetary cooling

In climate science, longwave radiation (LWR) is electromagnetic thermal radiation emitted by Earth's surface, atmosphere, and clouds. It may also be referred to as terrestrial radiation. This radiation is in the infrared portion of the spectrum, but is distinct from the shortwave (SW) near-infrared radiation found in sunlight.

<span class="mw-page-title-main">Atmospheric infrared sounder</span> Science instrument on NASAs Aqua satellite

The atmospheric infrared sounder (AIRS) is one of six instruments flying on board NASA's Aqua satellite, launched on May 4, 2002. The instrument is designed to support climate research and improve weather forecasting.

<span class="mw-page-title-main">Chesapeake Light</span> Lighthouse in Virginia, United States

Chesapeake Light is an offshore lighthouse marking the entrance to the Chesapeake Bay. The structure was first marked with a lightship in the 1930s, and was later replaced by a "Texas Tower" in 1965. The lighthouse was eventually automated and was used for supporting atmospheric measurement sites for NASA and NOAA. Due to deteriorating structural conditions, the lighthouse was deactivated in 2016. At the time, it was the last remaining "Texas Tower" still in use due to obsolescence.

<span class="mw-page-title-main">Global Energy and Water Exchanges</span>

The Global Energy and Water Exchanges Project is an international research project and a core project of the World Climate Research Programme (WCRP).

<span class="mw-page-title-main">Joint Polar Satellite System</span> Constellation of American meteorology satellites

The Joint Polar Satellite System (JPSS) is the latest generation of U.S. polar-orbiting, non-geosynchronous, environmental satellites. JPSS will provide the global environmental data used in numerical weather prediction models for forecasts, and scientific data used for climate monitoring. JPSS will aid in fulfilling the mission of the U.S. National Oceanic and Atmospheric Administration (NOAA), an agency of the Department of Commerce. Data and imagery obtained from the JPSS will increase timeliness and accuracy of public warnings and forecasts of climate and weather events, thus reducing the potential loss of human life and property and advancing the national economy. The JPSS is developed by the National Aeronautics and Space Administration (NASA) for the National Oceanic and Atmospheric Administration (NOAA), who is responsible for operation of JPSS. Three to five satellites are planned for the JPSS constellation of satellites. JPSS satellites will be flown, and the scientific data from JPSS will be processed, by the JPSS – Common Ground System (JPSS-CGS).

<span class="mw-page-title-main">Suomi NPP</span> Earth Weather Satellite

The Suomi National Polar-orbiting Partnership, previously known as the National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) and NPP-Bridge, is a weather satellite operated by the United States National Oceanic and Atmospheric Administration (NOAA). It was launched in 2011 and is currently in operation.

<span class="mw-page-title-main">CLARREO</span> NASA decadal survey mission

CLARREO is a high-priority NASA decadal survey mission, originally selected as such by the National Research Council in 2007. The CLARREO mission is intended to provide a metrology laboratory in orbit to accurately quantify and attribute Earth's climate change. The mission is also designed to transfer its high accuracy to other spaceborne sensors. It would serve as a reference calibration standard in orbit, making climate trends apparent in their data sets by 2055, within a 30-year time frame after its planned launch in the 2020s. These measurements may go on to enable testing, validation, and improvement of climate model prediction.

<span class="mw-page-title-main">Radiation Budget Instrument</span>

The Radiation Budget Instrument (RBI) is a scanning radiometer capable of measuring Earth's reflected sunlight and emitted thermal radiation. The project was cancelled on January 26, 2018; NASA cited technical, cost, and schedule issues and the impact of anticipated RBI cost growth on other programs.

<span class="mw-page-title-main">NOAA-21</span> NASA/NOAA satellite

NOAA-21, designated JPSS-2 prior to launch, is the second of the United States National Oceanic and Atmospheric Administration (NOAA)'s latest generation of U.S. polar-orbiting, non-geosynchronous, environmental satellites called the Joint Polar Satellite System. NOAA-21 was launched on 10 November 2022 and join NOAA-20 and Suomi NPP in the same orbit. Circling the Earth from pole-to-pole, it will cross the equator about 14 times daily, providing full global coverage twice a day. It was launched with LOFTID.

<span class="mw-page-title-main">NOAA-20</span> NASA satellite

NOAA-20, designated JPSS-1 prior to launch, is the first of the United States National Oceanic and Atmospheric Administration's latest generation of U.S. polar-orbiting, non-geosynchronous, environmental satellites called the Joint Polar Satellite System. NOAA-20 was launched on 18 November 2017 and joined the Suomi National Polar-orbiting Partnership satellite in the same orbit. NOAA-20 operates about 50 minutes behind Suomi NPP, allowing important overlap in observational coverage. Circling the Earth from pole-to-pole, it crosses the equator about 14 times daily, providing full global coverage twice a day. This gives meteorologists information on "atmospheric temperature and moisture, clouds, sea-surface temperature, ocean color, sea ice cover, volcanic ash, and fire detection" so as to enhance weather forecasting including hurricane tracking, post-hurricane recovery by detailing storm damage and mapping of power outages.

References

  1. 1 2 B. A. Wielicki; Harrison, Edwin F.; Cess, Robert D.; King, Michael D.; Randall, David A.; et al. (1995). "Mission to Planet Earth: Role of Clouds and Radiation in Climate". Bull. Am. Meteorol. Soc. 76 (11): 2125–2152. Bibcode:1995BAMS...76.2125W. doi: 10.1175/1520-0477(1995)076<2125:MTPERO>2.0.CO;2 .
  2. Wielicki; et al. (1996). "Clouds and the Earth's Radiant Energy System (CERES): An Earth Observing System Experiment". Bulletin of the American Meteorological Society. 77 (5): 853–868. Bibcode:1996BAMS...77..853W. doi: 10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2 .
  3. P. Minnis; et al. (September 2003). "CERES Cloud Property Retrievals from Imager on TRMM, Terra and Aqua" (PDF). Proceedings of SPIE 10th International Symposium on Remote Sensing. Conference on Remote Sensing of Clouds and the Atmosphere VII. Spain. pp. 37–48.
  4. Barkstrom, Bruce R. (1984). "The Earth Radiation Budget Experiment". Bulletin of the American Meteorological Society . 65 (11): 1170–1186. Bibcode:1984BAMS...65.1170B. doi: 10.1175/1520-0477(1984)065<1170:TERBE>2.0.CO;2 .
  5. "Surface and Atmospheric Remote Sensing: Technologies, Data Analysis and Interpretation., International". Geoscience and Remote Sensing Symposium IGARSS '94. 1994.
  6. NASA, Clouds and the Earth's Radiant Energy System (CERES) (accessed Sept. 9, 2014)
  7. "Joint Polar Satellite System - Launch Schedule". www.jpss.noaa.gov. Archived from the original on 19 January 2017. Retrieved 23 January 2017.
  8. 1 2 "Joint Polar Satellite System: Mission and Instruments". NASA. Retrieved 14 November 2017.
  9. "NASA Cancels Earth Science Sensor Set for 2021 Launch". NASA.gov. 2018-01-26. Retrieved 28 January 2018.
  10. "NASA Selects New Instrument to Continue Key Climate Record". NASA. 26 February 2020. Retrieved 19 October 2023.
  11. Daniel Strain (27 February 2020). "$130 million space mission to monitor Earth's energy budget". CU Boulder. Retrieved 19 October 2023.
  12. Loeb, N. G.; Kato, Seiji; Loukachine, Konstantin; Manalo-Smith, Natividad; et al. (2005). "Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth's Radiant Energy System instrument on the Terra Satellite. Part I: Methodology". Journal of Atmospheric and Oceanic Technology. 22 (4): 338–351. Bibcode:2005JAtOT..22..338L. doi: 10.1175/JTECH1712.1 .
  13. 1 2 Loeb, Norman G.; Doelling, David R.; Hailan, Wang; Su, Wenling; et al. (15 January 2018). "Clouds and the Earth's Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) Edition-4.0 Data Product". Journal of Climate. 31 (2): 895–918. Bibcode:2018JCli...31..895L. doi: 10.1175/JCLI-D-17-0208.1 .
  14. 1 2 3 Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J.; Leroy, S.; et al. (1 October 2013). "Achieving Climate Change Absolute Accuracy in Orbit". Bulletin of the American Meteorological Society. 94 (10): 1519–1539. Bibcode:2013BAMS...94.1519W. doi: 10.1175/BAMS-D-12-00149.1 .
  15. Trenberth, Kevin E; Cheng, Lijing (2022-09-01). "A perspective on climate change from Earth's energy imbalance". Environmental Research: Climate. 1 (1): 013001. doi: 10.1088/2752-5295/ac6f74 . ISSN   2752-5295.
  16. M. Folkman et al., "Calibration of a shortwave reference standard by transfer from a blackbody standard using a cryogenic active cavity radiometer", IEEE Geoscience and Remote Sensing Symposium, pp. 2298–2300, 1994.
  17. Priestley, Kory; et al. (August 5, 2014). "CERES CALCON Talk".
  18. 1 2 Matthews (2009). "In-Flight Spectral Characterization and Calibration Stability Estimates for the Clouds and the Earth's Radiant Energy System (CERES)". Journal of Atmospheric and Oceanic Technology. 28 (1): 3. Bibcode:2011JAtOT..28....3P. doi: 10.1175/2010JTECHA1521.1 .
  19. Priestley, Kory (July 1, 2002). "CERES Gain Changes". Archived from the original on December 12, 2016. Retrieved December 8, 2017.
  20. Priestley; et al. (2001). "Postlaunch Radiometric Validation of the Clouds and the Earth's Radiant Energy System (CERES) Proto-Flight Model on the Tropical Rainfall Measuring Mission (TRMM) Spacecraft through 1999". Journal of Applied Meteorology. 39 (12): 2249. Bibcode:2000JApMe..39.2249P. doi: 10.1175/1520-0450(2001)040<2249:PRVOTC>2.0.CO;2 .
  21. Priestley; et al. (2011). "Radiometric Performance of the CERES Earth Radiation Budget Climate Record Sensors on the EOS Aqua and Terra Spacecraft through April 2007". Journal of Atmospheric and Oceanic Technology. 28 (1): 3. Bibcode:2011JAtOT..28....3P. doi: 10.1175/2010JTECHA1521.1 .
  22. Loeb, Norman G.; Johnson, Gregory C.; Thorsen, Tyler J.; Lyman, John M.; et al. (15 June 2021). "Satellite and Ocean Data Reveal Marked Increase in Earth's Heating Rate". Geophysical Research Letters. 48 (13). Bibcode:2021GeoRL..4893047L. doi: 10.1029/2021GL093047 .
  23. Marti, Florence; Blazquez, Alejandro; Meyssignac, Benoit; Ablain, Michaël; Barnoud, Anne; et al. (2021). "Monitoring the ocean heat content change and the Earth energy imbalance from space altimetry and space gravimetry". Earth System Science Data. doi: 10.5194/essd-2021-220 .
  24. Hakuba, M.Z.; Frederikse, T.; Landerer, F.W. (28 August 2021). "Earth's Energy Imbalance From the Ocean Perspective (2005–2019)". Geophysical Research Letters. 48 (16). Bibcode:2021GeoRL..4893624H. doi: 10.1029/2021GL093624 .