Coibamide A

Last updated
Coibamide A
Coibamide A.svg
Names
IUPAC name
[(2S)-1-[[(2S)-1-[[(2S)-1-[[(3S,6S,9S,12S,15S,18S,21S,22R)-15-[(2S)-butan-2-yl]-18-(methoxymethyl)-6-[(4-methoxyphenyl)methyl]-3,4,10,12,16,19,22-heptamethyl-9-(2-methylpropyl)-2,5,8,11,14,17,20-heptaoxo-1-oxa-4,7,10,13,16,19-hexazacyclodocos-21-yl]-methylamino]-4-methyl-1-oxopentan-2-yl]-methylamino]-3-methoxy-1-oxopropan-2-yl]-methylamino]-3-methyl-1-oxobutan-2-yl] (2S)-2-(dimethylamino)-3-methylbutanoate
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/C65H110N10O16/c1-26-40(10)52-56(77)66-41(11)57(78)70(17)47(31-36(2)3)55(76)67-46(33-44-27-29-45(89-25)30-28-44)58(79)69(16)42(12)64(85)90-43(13)53(62(83)72(19)50(35-88-24)61(82)74(52)21)75(22)59(80)48(32-37(4)5)71(18)60(81)49(34-87-23)73(20)63(84)54(39(8)9)91-65(86)51(38(6)7)68(14)15/h27-30,36-43,46-54H,26,31-35H2,1-25H3,(H,66,77)(H,67,76)/t40-,41-,42-,43+,46-,47-,48-,49-,50-,51-,52-,53-,54-/m0/s1
    Key: LVHKHLZPRPTQJG-BNLDXBMISA-N
  • CC[C@H](C)[C@H]1C(=O)N[C@H](C(=O)N([C@H](C(=O)N[C@H](C(=O)N([C@H](C(=O)O[C@@H]([C@@H](C(=O)N([C@H](C(=O)N1C)COC)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](COC)N(C)C(=O)[C@H](C(C)C)OC(=O)[C@H](C(C)C)N(C)C)C)C)C)CC2=CC=C(C=C2)OC)CC(C)C)C)C
Properties
C65H110N10O16
Molar mass 1287.649 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Coibamide A is an antiproliferative depsipeptide which was isolated from a marine Leptolyngbya cyanobacterium. [1] Testing of coibamide A in the National Cancer Institute in vitro 60 human tumor cell line panel (NCI-60) revealed potent anti-proliferative activity and a unique selectivity profile. Similarities between coibamide A- and apratoxin A-induced changes in cell morphology, decreases in VEGFR2 expression and macroautophagy signaling in HUVECs raise the possibility that both cyanobacterial natural products share a common mechanism of action. [2] Wild-type mouse embryonic fibroblasts were more vulnerable to coibamide A than cells lacking autophagy-related protein 5 (Atg5) that suggest coibamide A as a compound with characteristics that may utilize autophagy for pro-death signaling. [3]

Solid-phase total syntheses of highly methylated cyclic azacoibamide A and its O-desmethyl analog were achieved to improve pharmacokinetic properties of coibamide A. [4]

Related Research Articles

<span class="mw-page-title-main">Autophagy</span> Cellular catabolic process in which cells digest parts of their own cytoplasm

Autophagy is the natural, conserved degradation of the cell that removes unnecessary or dysfunctional components through a lysosome-dependent regulated mechanism. It allows the orderly degradation and recycling of cellular components. Although initially characterized as a primordial degradation pathway induced to protect against starvation, it has become increasingly clear that autophagy also plays a major role in the homeostasis of non-starved cells. Defects in autophagy have been linked to various human diseases, including neurodegeneration and cancer, and interest in modulating autophagy as a potential treatment for these diseases has grown rapidly.

<span class="mw-page-title-main">Reactive oxygen species</span> Highly reactive molecules formed from diatomic oxygen (O₂)

In chemistry and biology, reactive oxygen species (ROS) are highly reactive chemicals formed from diatomic oxygen (O2), water, and hydrogen peroxide. Some prominent ROS are hydroperoxide (O2H), superoxide (O2-), hydroxyl radical (OH.), and singlet oxygen. ROS are pervasive because they are readily produced from O2, which is abundant. ROS are important in many ways, both beneficial and otherwise. ROS function as signals, that turn on and off biological functions. They are intermediates in the redox behavior of O2, which is central to fuel cells. ROS are central to the photodegradation of organic pollutants in the atmosphere. Most often however, ROS are discussed in a biological context, ranging from their effects on aging and their role in causing dangerous genetic mutations.

<span class="mw-page-title-main">Indole-3-carbinol</span> Chemical compound

Indole-3-carbinol (I3C, C9H9NO) is produced by the breakdown of the glucosinolate glucobrassicin, which can be found at relatively high levels in cruciferous vegetables such as broccoli, cabbage, cauliflower, brussels sprouts, collard greens and kale. It is also available in dietary supplements. Indole-3-carbinol is the subject of on-going biomedical research into its possible anticarcinogenic, antioxidant, and anti-atherogenic effects. Research on indole-3-carbinol has been conducted primarily using laboratory animals and cultured cells. Limited and inconclusive human studies have been reported. A recent review of the biomedical research literature found that "evidence of an inverse association between cruciferous vegetable intake and breast or prostate cancer in humans is limited and inconsistent" and "larger randomized controlled trials are needed" to determine if supplemental indole-3-carbinol has health benefits.

<span class="mw-page-title-main">Betulinic acid</span> Chemical compound

Betulinic acid is a naturally occurring pentacyclic triterpenoid which has antiretroviral, antimalarial, and anti-inflammatory properties, as well as a more recently discovered potential as an anticancer agent, by inhibition of topoisomerase. It is found in the bark of several species of plants, principally the white birch from which it gets its name, but also the ber tree, selfheal, the tropical carnivorous plants Triphyophyllum peltatum and Ancistrocladus heyneanus, Diospyros leucomelas, a member of the persimmon family, Tetracera boiviniana, the jambul, flowering quince, rosemary, and Pulsatilla chinensis.

<span class="mw-page-title-main">Plitidepsin</span> Chemical compound

Plitidepsin is a chemical compound extracted from the ascidian Aplidium albicans. It is currently undergoing clinical trial testing. It is a member of the class of compounds known as didemnins.

p14ARF is an alternate reading frame protein product of the CDKN2A locus. p14ARF is induced in response to elevated mitogenic stimulation, such as aberrant growth signaling from MYC and Ras (protein). It accumulates mainly in the nucleolus where it forms stable complexes with NPM or Mdm2. These interactions allow p14ARF to act as a tumor suppressor by inhibiting ribosome biogenesis or initiating p53-dependent cell cycle arrest and apoptosis, respectively. p14ARF is an atypical protein, in terms of its transcription, its amino acid composition, and its degradation: it is transcribed in an alternate reading frame of a different protein, it is highly basic, and it is polyubiquinated at the N-terminus.

A depsipeptide is a peptide in which one or more of its amide, -C(O)NHR-, groups are replaced by the corresponding ester, -C(O)OR-. Many depsipeptides have both peptide and ester linkages. Elimination of the N–H group in a peptide structure results in a decrease of H-bonding capability, which is responsible for secondary structure and folding patterns of peptides, thus inducing structural deformation of the helix and β-sheet structures. Because of decreased resonance delocalization in esters relative to amides, depsipeptides have lower rotational barriers for cis-trans isomerization and therefore they have more flexible structures than their native analogs. They are mainly found in marine and microbial natural products.

<span class="mw-page-title-main">Cryptophycin</span>

Cryptophycins are a family of macrolide molecules that are potent cytotoxins and have been studied for potential antiproliferative properties useful in developing chemotherapy. They are members of the depsipeptide family.

<span class="mw-page-title-main">Toll-like receptor 9</span> Protein-coding gene in the species Homo sapiens

Toll-like receptor 9 is a protein that in humans is encoded by the TLR9 gene. TLR9 has also been designated as CD289. It is a member of the toll-like receptor (TLR) family. TLR9 is an important receptor expressed in immune system cells including dendritic cells, macrophages, natural killer cells, and other antigen presenting cells. TLR9 is expressed on endosomes internalized from the plasma membrane, binds DNA, and triggers signaling cascades that lead to a pro-inflammatory cytokine response. Cancer, infection, and tissue damage can all modulate TLR9 expression and activation. TLR9 is also an important factor in autoimmune diseases, and there is active research into synthetic TLR9 agonists and antagonists that help regulate autoimmune inflammation.

<span class="mw-page-title-main">Vascular endothelial growth factor A</span> Protein involved in blood vessel growth

Vascular endothelial growth factor A (VEGF-A) is a protein that in humans is encoded by the VEGFA gene.

Ramucirumab is a fully human monoclonal antibody (IgG1) developed for the treatment of solid tumors. This drug was developed by ImClone Systems Inc. It was isolated from a native phage display library from Dyax.

<span class="mw-page-title-main">Romidepsin</span> Chemical compound

Romidepsin, sold under the brand name Istodax, is an anticancer agent used in cutaneous T-cell lymphoma (CTCL) and other peripheral T-cell lymphomas (PTCLs). Romidepsin is a natural product obtained from the bacterium Chromobacterium violaceum, and works by blocking enzymes known as histone deacetylases, thus inducing apoptosis. It is sometimes referred to as depsipeptide, after the class of molecules to which it belongs. Romidepsin is branded and owned by Gloucester Pharmaceuticals, a part of Celgene.

<span class="mw-page-title-main">Monomethyl auristatin E</span> Chemical compound

Monomethyl auristatin E (MMAE) is a synthetic antineoplastic agent. Because of its toxicity, it cannot be used as a drug itself; instead, it is linked to a monoclonal antibody (MAB) which directs it to the cancer cells. In International Nonproprietary Names for MMAE-MAB-conjugates, the name vedotin refers to MMAE plus its linking structure to the antibody. It is a potent antimitotic drug derived from peptides occurring in marine shell-less mollusc Dolabella auricularia called dolastatins which show potent activity in preclinical studies, both in vitro and in vivo, against a range of lymphomas, leukemia and solid tumors. These drugs show potency of up to 200 times that of vinblastine, another antimitotic drug used for Hodgkin lymphoma as well as other types of cancer.

Edelfosine is a synthetic alkyl-lysophospholipid (ALP). It has antineoplastic (anti-cancer) effects.

<span class="mw-page-title-main">Spiruchostatin</span> Chemical compound

Spiruchostatins are a group of chemical compounds isolated from Pseudomonas sp. as gene expression-enhancing substances. They possess novel bicyclic depsipeptides involving 4-amino-3-hydroxy-5-methylhexanoic acid and 4-amino-3-hydroxy-5-methylheptanoic acid residues. The two main forms are spiruchostatin A and spiruchostatin B.

<span class="mw-page-title-main">Symplocamide A</span> Chemical compound

Symplocamide A is a newly discovered (2008) 3-amino-6-hydroxy-2-piperidone (Ahp) cyclodepsipeptide that has been isolated from a marine cyanobacteria in Papua New Guinea, which has only been identified at the genus level (Symploca). Cyanobacteria, both freshwater and marine, are known as producers of diverse protease inhibitors that may be used to treat diseases, such as HIV, and some forms of cancer. Research on symplocamide A has shown that it is a strong serine protease inhibitor and has a high level of cytotoxicity to cancer cells when used in vitro. As of the time of this writing, its use as a treatment on human participants has not been done and future study will have to be done before any human testing can be commenced.

mTOR inhibitors Class of pharmaceutical drugs

mTOR inhibitors are a class of drugs that inhibit the mammalian target of rapamycin (mTOR), which is a serine/threonine-specific protein kinase that belongs to the family of phosphatidylinositol-3 kinase (PI3K) related kinases (PIKKs). mTOR regulates cellular metabolism, growth, and proliferation by forming and signaling through two protein complexes, mTORC1 and mTORC2. The most established mTOR inhibitors are so-called rapalogs, which have shown tumor responses in clinical trials against various tumor types.

Kalkitoxin, a toxin derived from the cyanobacterium Lyngbya majuscula, induces NMDA receptor mediated neuronal necrosis, blocks voltage-dependent sodium channels, and induces cellular hypoxia by inhibiting the electron transport chain (ETC) complex 1.

Laucysteinamide A (LcA) is a marine natural product isolated from a cyanobacterium, Caldora penicillata.

<span class="mw-page-title-main">Lyngbyastatins</span> Chemical compound

Lyngbyastatins 1 and 3 are cytotoxic cyclic depsipeptides that possess antiproliferative activity against human cancer cell lines. These compounds, first isolated from the extract of a Lyngbya majuscula/Schizothrix calcicola assemblage and from L. majuscula Harvey ex Gomont (Oscillatoriaceae) strains, respectively, target the actin cytoskeleton of eukaryotic cells.

References

  1. Medina, Rebecca A.; Goeger, Douglas E.; Hills, Patrice; Mooberry, Susan L.; Huang, Nelson; Romero, Luz I.; Ortega-Barría, Eduardo; Gerwick, William H.; McPhail, Kerry L. (2008). "Coibamide A, a Potent Antiproliferative Cyclic Depsipeptide from the Panamanian Marine Cyanobacterium Leptolyngbyasp". Journal of the American Chemical Society. 130 (20): 6324–5. doi:10.1021/ja801383f. PMC   2659736 . PMID   18444611.
  2. Jeffrey D. Serrill; Xuemei Wan; Andrew M. Hau; Hyo Sang Jang; Daniel J. Coleman; Arup K. Indra; Adam W. G. Alani; Kerry L. McPhail; Jane E. Ishmael (2016). "Coibamide A, a natural lariat depsipeptide, inhibits VEGFA/VEGFR2 expression and suppresses tumor growth in glioblastoma xenografts". Investigational New Drugs. 34 (1): 24–40. doi:10.1007/s10637-015-0303-x. PMID   26563191. S2CID   34252666.
  3. Tan, M. (2015). Investigation of autophagy-assisted cell death in response to the cancer cell toxin coibamide A (Doctoral dissertation).
  4. Sable, Ganesh A.; Park, Jaekwan; Lim, Soo-Jeong; Lim, Dongyeol (2016). "Solid-phase Total Synthesis of Amide Analogues of Coibamide A: Azacoibamide a andO-Desmethyl Azacoibamide A". Bulletin of the Korean Chemical Society. 37 (3): 330–334. doi:10.1002/bkcs.10674.