Coitocaecum parvum

Last updated

Coitocaecum parvum
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Platyhelminthes
Class: Trematoda
Order: Plagiorchiida
Family: Opecoelidae
Genus: Coitocaecum
Species:
C. parvum
Binomial name
Coitocaecum parvum
Crowcroft, 1945

Coitocaecum parvum is a digeneic trematode or flatworm (Platyhelminthes) that is parasitic to the intestine of the common bully ( Gobiomorphus cotidianus ) or upland bully (G. breviceps). The common and upland bully are freshwater fish of New Zealand that C. parvum uses as its definitive host. C. parvum is a hermaphroditic freshwater trematode that can omit its definitive host and produce eggs by selfing or progenesis inside its amphipod second intermediate host. [1]

Contents

Life cycle

The life cycle of C. parvum begins when eggs are released into the water and hatch into free-swimming miracidia. The miracidia then penetrate the first intermediate host, Potamopyrgus antipodarum (the New Zealand mud snail), where they multiply and develop into sporocysts. Next, free-living cercariae are asexually produced from the sporocysts and shed by the snails. These shed cercarial larvae then penetrate the hemocoel of the second intermediate host, Paracalliope fluviatilis (amphipod) and encyst as metacercariae. [2] At this stage, the metacercariae have two options: 1) to wait for the bully (the definitive host) to eat the amphipod or 2) to undergo selfing (progenesis).

C. parvum will take up residence in the bully intestine where it will mature and reproduce eggs sexually (if it finds a partner) or via self-fertilization (since trematodes are hermaphroditic). However, if the amphipod is not eaten, the C. parvum metacercariae mature within the amphipod where they produce viable eggs within the cyst in the hemocoel (body cavity). [3] Eggs produced in this fashion remain enclosed in the cyst until the amphipod dies. After amphipod death, the eggs are released into the water where they hatch into miracidia and are infective to the snail. [2] The process of maturing within the intermediate host and eliminating the need for the definitive host is known as progenesis. [1]

Life cycle choice

The progenetic life cycle choice is dependent upon opportunities for transmission and the risk of dead-end transmission. The worm can use cues from the amphipod caused by the presence of the predatory definitive host to interrupt its growth cycle in wait to be eaten. However, under low amounts of stress cues from the amphipod, the worm responds by adopting the progenetic lifecycle. [4]

Another factor involved in the choice of progenesis is the competition with other interspecies and intraspecies competition. In the case of interspecies coinfection, competition with Microphallus sp. (avian definitive host) favors progenesis in order to ensure C. parvum egg production. Intraspecies coinfection is when more than one C. parvum larvae infects the amphipod, and whoever reproduces faster is going to ensure passage of its genetic information. [5]

Progenesis

The progenetic ability of C. parvum is evolutionarily advantageous for this trematode. While inbreeding or selfing is evolutionarily disadvantageous, because it decreases the ability for genetic diversity to adapt to new hosts, this worm utilizes progenesis for reproductive insurance. Since progenesis does not preclude future generations of cross-fertilization in the fish host, it is merely a means of avoiding dead-end hosts.

Related Research Articles

<span class="mw-page-title-main">Trematoda</span> Class of parasitic flatworms

Trematoda is a class of flatworms known as flukes or trematodes. They are obligate internal parasites with a complex life cycle requiring at least two hosts. The intermediate host, in which asexual reproduction occurs, is usually a snail. The definitive host, where the flukes sexually reproduce, is a vertebrate. Infection by trematodes can cause disease in all five traditional vertebrate classes: mammals, birds, amphibians, reptiles, and fish.

<span class="mw-page-title-main">Clonorchiasis</span> Infectious disease caused by fish parasites

Clonorchiasis is an infectious disease caused by the Chinese liver fluke and two related species. Clonorchiasis is a known risk factor for the development of cholangiocarcinoma, a neoplasm of the biliary system.

<i>Fasciola hepatica</i> Species of fluke

Fasciola hepatica, also known as the common liver fluke or sheep liver fluke, is a parasitic trematode of the class Trematoda, phylum Platyhelminthes. It infects the livers of various mammals, including humans, and is transmitted by sheep and cattle to humans all over the world. The disease caused by the fluke is called fasciolosis or fascioliasis, which is a type of helminthiasis and has been classified as a neglected tropical disease. Fasciolosis is currently classified as a plant/food-borne trematode infection, often acquired through eating the parasite's metacercariae encysted on plants. F. hepatica, which is distributed worldwide, has been known as an important parasite of sheep and cattle for decades and causes significant economic losses in these livestock species, up to £23 million in the UK alone. Because of its relatively large size and economic importance, it has been the subject of many scientific investigations and may be the best-known of any trematode species. F. hepatica's closest relative is Fasciola gigantica. These two flukes are sister species; they share many morphological features and can mate with each other.

<i>Fasciola</i> Genus of flukes

Fasciola, commonly known as the liver fluke, is a genus of parasitic trematodes. There are three species within the genus Fasciola: Fasciola nyanzae,Fasciolahepatica and Fasciolagigantica. Fasciola hepatica and F. gigantica are known to form hybrids. Both F. hepatica and F. gigantica and their hybrids infect the liver tissue of a wide variety of mammals, including humans, in a condition known as fascioliasis. F. hepatica measures up to 30 mm by 15 mm, while F. gigantica measures up to 75 mm by 15 mm. Fasciola nyanzae is thought to exclusively infect the common hippopotamus, Hippopotamus amphibius.

<span class="mw-page-title-main">Trematode life cycle stages</span>

Trematodes are parasitic flatworms of the class Trematoda, specifically parasitic flukes with two suckers: one ventral and the other oral. Trematodes are covered by a tegument, that protects the organism from the environment by providing secretory and absorptive functions.

<i>Paragonimus westermani</i> Species of fluke

Paragonimus westermani is the most common species of lung fluke that infects humans, causing paragonimiasis. Human infections are most common in eastern Asia and in South America. Paragonimiasis may present as a sub-acute to chronic inflammatory disease of the lung. It was discovered by Coenraad Kerbert (1849–1927) in 1878.

<i>Echinostoma</i> Genus of flukes

Echinostoma is a genus of trematodes (flukes), which can infect both humans and other animals. These intestinal flukes have a three-host life cycle with snails or other aquatic organisms as intermediate hosts, and a variety of animals, including humans, as their definitive hosts.

<span class="mw-page-title-main">Paragonimiasis</span> Medical condition

Paragonimiasis is a food-borne parasitic disease caused by several species of lung flukes belonging to genus Paragonimus. Infection is acquired by eating crustaceans such as crabs and crayfishes which host the infective forms called metacercariae, or by eating raw or undercooked meat of mammals harboring the metacercariae from crustaceans.

<i>Brachylaima</i> Genus of flukes

Brachylaima is a genus of trematodes that can infect the gastrointestinal tract of human beings.

<i>Leucochloridium paradoxum</i> Parasitic flatworm

Leucochloridium paradoxum, the green-banded broodsac, is a parasitic flatworm. Its intermediate hosts are land snails, usually of the genus Succinea. The pulsating, green broodsacs fill the eye stalks of the snail, thereby attracting predation by birds, the primary host. These broodsacs visually imitate caterpillars, a prey of birds. The adult parasite lives in the bird's cloaca, releasing its eggs into the faeces.

Metagonimoides oregonensis is a trematode, or fluke worm, in the family Heterophyidae. This North American parasite is found primarily in the intestines of raccoons, American minks, frogs in the genus Rana, and freshwater snails in the genus Goniobasis. It was first described in 1931 by E. W. Price. The parasite has a large distribution, from Oregon to North Carolina. Adult flukes vary in host range and morphology dependent on the geographical location. This results in different life cycles, as well as intermediate hosts, across the United States. On the west coast, the intermediate host is freshwater snails (Goniobasis), while on the east coast the intermediate host is salamanders (Desmognathus). The parasites on the west coast are generally much larger than on the east coast. For example, the pharynx as well as the body of the parasite are distinctly larger in Oregon than in North Carolina. The reverse pattern is observed on the east coast for uterine eggs, which are larger on the west coast. In snails, there is also a higher rate of infection in female snails than in males. Research on the life history traits of the parasites have been performed with hamsters and frogs as model species.

<i>Leucochloridium variae</i> Species of fluke

Leucochloridium variae, the brown-banded broodsac, is a species of trematode whose life cycle involves the alternate parasitic infection of certain species of snail and bird. While there is no external evidence of the worm's existence within the bird host, the infection of the snail host is visible when its eye stalks become grotesquely engorged with the parasite's brood sacs. These brood sacks pulsate and move to imitate insect larva, attracting the parasite's next host, insectivore birds. The bird rips off the eye stalk and eats it, thus becoming infected. Later on, the parasite's eggs are dropped with the bird's feces. Similar life-histories are found in other species of the genus Leucochloridium, including Leucochloridium paradoxum.

<i>Nanophyetus</i> Genus of flukes

Nanophyetus salmincola is a food-borne intestinal trematode parasite prevalent on the Pacific Northwest coast. The species may be the most common trematode endemic to the United States.

Echinostoma hortense is an intestinal fluke of the class Trematoda, which has been found to infect humans in East Asian countries such as Korea, China, and Japan. This parasite resides in the intestines of birds, rats and other mammals such as humans. While human infections are very rare in other regions of the world, East Asian countries have reported human infections up to about 24% of the population in some endemic sub-regions. E. hortense infections are zoonotic infections, which occurs from eating raw or undercooked freshwater fish. The primary disease associated with an E. hortense infection is called echinostomiasis, which is a general name given to diseases caused by Trematodes of the genus Echinostoma.

<i>Telogaster</i> Genus of flukes

Telogaster opisthorchis is an endoparasite in the class Trematoda within the phylum Platyhelminthes. This fluke is known for causing tumor like malformations in fishes by attaching onto its spinal region in the metacercariae form. Malformations cause fish to become more susceptible to fish eating predators allowing T. opisthorchis to continue with its lifecycle.

<i>Clinostomum marginatum</i> Species of fluke

Clinostomum marginatum is a species of parasitic fluke. It is commonly called the "Yellow grub". It is found in many freshwater fish in North America, and no fish so far is immune to this parasite. It is also found in frogs. Clinostomum marginatum can also be found in the mouth of aquatic birds such as herons and egrets. They are commonly present in the esophagus of fish-eating birds and reptiles. Eggs of these trematodes are shed in the feces of aquatic birds and released into water. Aquatic birds become hosts of this parasite by ingesting infected freshwater fish. The metacercariae are found right beneath the skin or in the muscles of host fish.

Megalodiscus temperatus is a Digenean in the phylum Platyhelminthes. This parasite belongs to the Cladorchiidae family and is a common parasite located in the urinary bladder and rectum of frogs. The primary host is frogs and the intermediate hosts of Megalodiscus temeperatus are freshwater snails in the genus Helisoma.

<span class="mw-page-title-main">Bivitellobilharzia nairi</span> Species of fluke

Bivitellobilharzia nairi is a species of trematodes, part of the family Schistosomatidae. This is a fairly new identified endoparasite that was found in 1945 by Mudaliar and Ramanujachari, who first recorded the parasite in India. Researchers collected fecal samples of the Indian rhinoceros and were startled to find B. nairi eggs.

<i>Metagonimus yokogawai</i> Species of fluke

Metagonimus yokogawai, or the Yokogawa fluke, is a species of a trematode, or fluke worm, in the family Heterophyidae.

Tylodelphys is a genus of parasitic fluke that infects the small water fish. It induces many behavioral changes on its host. Once inside a fish's eye, it can cause partial blindness and several behavioral changes to the intermediate host. Other species of flukes are able to turn into dormant cysts at certain stages of development, but Tylodelphys spp. stays active and roams free inside the fish's eye, giving it an opportunity for it to induce parasite behavior. When Tylodelphys larvae crawl around the inside of the fish's eye, it can get in between the retina and the lens. This can cause partial blindness to the fish, rendering the fish unable to notice predators. Tylodelphys consists of two species, Tylodelphys clavata and Tylodelphys podicipina Kozicka & Niewiadomska, 1960.

References

Sources