Colpitts oscillator

Last updated

A Colpitts oscillator, invented in 1918 by Canadian-American engineer Edwin H. Colpitts using vacuum tubes, [1] is one of a number of designs for LC oscillators, electronic oscillators that use a combination of inductors (L) and capacitors (C) to produce an oscillation at a certain frequency. The distinguishing feature of the Colpitts oscillator is that the feedback for the active device is taken from a voltage divider made of two capacitors in series across the inductor. [2] [3] [4] [5]

Contents

Overview

Figure 1: Simple common-base Colpitts oscillator (with simplified biasing) Cb colp.svg
Figure 1: Simple common-base Colpitts oscillator (with simplified biasing)
Figure 2: Simple common-collector Colpitts oscillator (with simplified biasing) Cc colp2.svg
Figure 2: Simple common-collector Colpitts oscillator (with simplified biasing)

The Colpitts circuit, like other LC oscillators, consists of a gain device (such as a bipolar junction transistor, field-effect transistor, operational amplifier, or vacuum tube) with its output connected to its input in a feedback loop containing a parallel LC circuit (tuned circuit), which functions as a bandpass filter to set the frequency of oscillation. The amplifier will have differing input and output impedances, and these need to be coupled into the LC circuit without overly damping it.

A Colpitts oscillator uses a pair of capacitors to provide voltage division to couple the energy in and out of the tuned circuit. (It can be considered as the electrical dual of a Hartley oscillator, where the feedback signal is taken from an "inductive" voltage divider consisting of two coils in series (or a tapped coil).) Fig. 1 shows the common-base Colpitts circuit. The inductor L and the series combination of C1 and C2 form the resonant tank circuit, which determines the frequency of the oscillator. The voltage across C2 is applied to the base-emitter junction of the transistor, as feedback to create oscillations. Fig. 2 shows the common-collector version. Here the voltage across C1 provides feedback. The frequency of oscillation is approximately the resonant frequency of the LC circuit, which is the series combination of the two capacitors in parallel with the inductor:

The actual frequency of oscillation will be slightly lower due to junction capacitances and resistive loading of the transistor.

As with any oscillator, the amplification of the active component should be marginally larger than the attenuation of the resonator losses and its voltage division, to obtain stable operation. Thus, a Colpitts oscillator used as a variable-frequency oscillator (VFO) performs best when a variable inductance is used for tuning, as opposed to tuning just one of the two capacitors. If tuning by variable capacitor is needed, it should be done with a third capacitor connected in parallel to the inductor (or in series as in the Clapp oscillator).

Practical example

Figure 3: Practical common-gate Colpitts oscillator with an oscillation frequency of ~10 MHz Colpitts Osz JFET Gate.gif
Figure 3: Practical common-gate Colpitts oscillator with an oscillation frequency of ~10 MHz

Fig. 3 shows an example with component values. [6] Instead of field-effect transistors, other active components such as bipolar junction transistors or vacuum tubes, capable of producing gain at the desired frequency, could be used.

The common gate amplifier has a low input impedance and a high output impedance. Therefore the amplifier input, the source, is connected to the low impedance tap of the LC circuit L1, C1, C2, C3 and the amplifier output, the drain, is connected to the high impedance top of the LC circuit. The resistor R1 sets the operating point to 0.5mA drain current with no oscillating. The output is at the low impedance tap and can drive some load. Still, this circuit has low harmonic distortion. An additional variable capacitor between drain of J1 and ground allows to change the frequency of the circuit. The load resistor RL is part of the simulation, not part of the circuit.

Theory

Figure 4: Ideal Colpitts oscillator model (common-collector configuration) Colpitts ideal model.svg
Figure 4: Ideal Colpitts oscillator model (common-collector configuration)

One method of oscillator analysis is to determine the input impedance of an input port neglecting any reactive components. If the impedance yields a negative resistance term, oscillation is possible. This method will be used here to determine conditions of oscillation and the frequency of oscillation.

An ideal model is shown to the right. This configuration models the common collector circuit in the section above. For initial analysis, parasitic elements and device non-linearities will be ignored. These terms can be included later in a more rigorous analysis. Even with these approximations, acceptable comparison with experimental results is possible.

Ignoring the inductor, the input impedance at the base can be written as

where is the input voltage, and is the input current. The voltage is given by

where is the impedance of . The current flowing into is , which is the sum of two currents:

where is the current supplied by the transistor. is a dependent current source given by

where is the transconductance of the transistor. The input current is given by

where is the impedance of . Solving for and substituting above yields

The input impedance appears as the two capacitors in series with the term , which is proportional to the product of the two impedances:

If and are complex and of the same sign, then will be a negative resistance. If the impedances for and are substituted, is

If an inductor is connected to the input, then the circuit will oscillate if the magnitude of the negative resistance is greater than the resistance of the inductor and any stray elements. The frequency of oscillation is as given in the previous section.

For the example oscillator above, the emitter current is roughly 1  mA. The transconductance is roughly 40  mS. Given all other values, the input resistance is roughly

This value should be sufficient to overcome any positive resistance in the circuit. By inspection, oscillation is more likely for larger values of transconductance and smaller values of capacitance. A more complicated analysis of the common-base oscillator reveals that a low-frequency amplifier voltage gain must be at least 4 to achieve oscillation. [7] The low-frequency gain is given by

Figure 5: Comparison of Hartley and Colpitts oscillators Oscillator comparison.svg
Figure 5: Comparison of Hartley and Colpitts oscillators

If the two capacitors are replaced by inductors, and magnetic coupling is ignored, the circuit becomes a Hartley oscillator. In that case, the input impedance is the sum of the two inductors and a negative resistance given by

In the Hartley circuit, oscillation is more likely for larger values of transconductance and larger values of inductance.

The above analysis also describes the behavior of the Pierce oscillator. The Pierce oscillator, with two capacitors and one inductor, is equivalent to the Colpitts oscillator. [8] Equivalence can be shown by choosing the junction of the two capacitors as the ground point. An electrical dual of the standard Pierce oscillator using two inductors and one capacitor is equivalent to the Hartley oscillator.

Working Principle

A Colpitts oscillator is an electronic circuit that generates a sinusoidal waveform, typically in the radio frequency range. It uses an inductor and two capacitors in parallel to form a resonant tank circuit, which determines the oscillation frequency. The output signal from the tank circuit is fed back into the input of an amplifier, where it is amplified and fed back into the tank circuit. The feedback signal provides the necessary phase shift for sustained oscillation. [9]

The working principle of a Colpitts oscillator can be explained as follows:

Where:

The Colpitts oscillator is widely used in various applications, such as RF communication systems, signal generators, and electronic testing equipment. It has better frequency stability than the Hartley oscillator, which uses a tapped inductor instead of a tapped capacitor in the tank circuit. [11] However, the Colpitts oscillator may require a higher supply voltage and a larger coupling capacitor than the Hartley oscillator. [12]

Oscillation amplitude

The amplitude of oscillation is generally difficult to predict, but it can often be accurately estimated using the describing function method.

For the common-base oscillator in Figure 1, this approach applied to a simplified model predicts an output (collector) voltage amplitude given by [13]

where is the bias current, and is the load resistance at the collector.

This assumes that the transistor does not saturate, the collector current flows in narrow pulses, and that the output voltage is sinusoidal (low distortion).

This approximate result also applies to oscillators employing different active device, such as MOSFETs and vacuum tubes.

Related Research Articles

An electronic oscillator is an electronic circuit that produces a periodic, oscillating or alternating current (AC) signal, usually a sine wave, square wave or a triangle wave, powered by a direct current (DC) source. Oscillators are found in many electronic devices, such as radio receivers, television sets, radio and television broadcast transmitters, computers, computer peripherals, cellphones, radar, and many other devices.

<span class="mw-page-title-main">Negative-feedback amplifier</span> Type of electronic amplifier

A negative-feedback amplifier is an electronic amplifier that subtracts a fraction of its output from its input, so that negative feedback opposes the original signal. The applied negative feedback can improve its performance and reduces sensitivity to parameter variations due to manufacturing or environment. Because of these advantages, many amplifiers and control systems use negative feedback.

<span class="mw-page-title-main">Relaxation oscillator</span> Oscillator that produces a nonsinusoidal repetitive waveform

In electronics, a relaxation oscillator is a nonlinear electronic oscillator circuit that produces a nonsinusoidal repetitive output signal, such as a triangle wave or square wave. The circuit consists of a feedback loop containing a switching device such as a transistor, comparator, relay, op amp, or a negative resistance device like a tunnel diode, that repetitively charges a capacitor or inductor through a resistance until it reaches a threshold level, then discharges it again. The period of the oscillator depends on the time constant of the capacitor or inductor circuit. The active device switches abruptly between charging and discharging modes, and thus produces a discontinuously changing repetitive waveform. This contrasts with the other type of electronic oscillator, the harmonic or linear oscillator, which uses an amplifier with feedback to excite resonant oscillations in a resonator, producing a sine wave.

<span class="mw-page-title-main">Negative resistance</span> Property that an increasing voltage results in a decreasing current

In electronics, negative resistance (NR) is a property of some electrical circuits and devices in which an increase in voltage across the device's terminals results in a decrease in electric current through it.

The Hartley oscillator is an electronic oscillator circuit in which the oscillation frequency is determined by a tuned circuit consisting of capacitors and inductors, that is, an LC oscillator. The circuit was invented in 1915 by American engineer Ralph Hartley. The distinguishing feature of the Hartley oscillator is that the tuned circuit consists of a single capacitor in parallel with two inductors in series, and the feedback signal needed for oscillation is taken from the center connection of the two inductors.

<span class="mw-page-title-main">Gyrator</span> Two-port non-reciprocal network element

A gyrator is a passive, linear, lossless, two-port electrical network element proposed in 1948 by Bernard D. H. Tellegen as a hypothetical fifth linear element after the resistor, capacitor, inductor and ideal transformer. Unlike the four conventional elements, the gyrator is non-reciprocal. Gyrators permit network realizations of two-(or-more)-port devices which cannot be realized with just the four conventional elements. In particular, gyrators make possible network realizations of isolators and circulators. Gyrators do not however change the range of one-port devices that can be realized. Although the gyrator was conceived as a fifth linear element, its adoption makes both the ideal transformer and either the capacitor or inductor redundant. Thus the number of necessary linear elements is in fact reduced to three. Circuits that function as gyrators can be built with transistors and op-amps using feedback.

<span class="mw-page-title-main">Common emitter</span> Type of electronic amplifier using a bipolar junction transistor

In electronics, a common-emitter amplifier is one of three basic single-stage bipolar-junction-transistor (BJT) amplifier topologies, typically used as a voltage amplifier. It offers high current gain, medium input resistance and a high output resistance. The output of a common emitter amplifier is inverted; i.e. for a sine wave input signal, the output signal is 180 degrees out of phase with respect to the input.

<span class="mw-page-title-main">LC circuit</span> Electrical "resonator" circuit, consisting of inductive and capacitive elements with no resistance

An LC circuit, also called a resonant circuit, tank circuit, or tuned circuit, is an electric circuit consisting of an inductor, represented by the letter L, and a capacitor, represented by the letter C, connected together. The circuit can act as an electrical resonator, an electrical analogue of a tuning fork, storing energy oscillating at the circuit's resonant frequency.

Linear electronic oscillator circuits, which generate a sinusoidal output signal, are composed of an amplifier and a frequency selective element, a filter. A linear oscillator circuit which uses an RC network, a combination of resistors and capacitors, for its frequency selective part is called an RC oscillator.

The Clapp oscillator or Gouriet oscillator is an LC electronic oscillator that uses a particular combination of an inductor and three capacitors to set the oscillator's frequency. LC oscillators use a transistor and a positive feedback network. The oscillator has good frequency stability.

The cascode is a two-stage amplifier that consists of a common emitter stage feeding into a common base stage when using bipolar junction transistors (BJTs) or alternatively a common source stage feeding a common gate stage when using field-effect transistors (FETs).

This article illustrates some typical operational amplifier applications. A non-ideal operational amplifier's equivalent circuit has a finite input impedance, a non-zero output impedance, and a finite gain. A real op-amp has a number of non-ideal features as shown in the diagram, but here a simplified schematic notation is used, many details such as device selection and power supply connections are not shown. Operational amplifiers are optimised for use with negative feedback, and this article discusses only negative-feedback applications. When positive feedback is required, a comparator is usually more appropriate. See Comparator applications for further information.

<span class="mw-page-title-main">Current divider</span> Simple linear circuit

In electronics, a current divider is a simple linear circuit that produces an output current (IX) that is a fraction of its input current (IT). Current division refers to the splitting of current between the branches of the divider. The currents in the various branches of such a circuit will always divide in such a way as to minimize the total energy expended.

In electronics, the Miller effect accounts for the increase in the equivalent input capacitance of an inverting voltage amplifier due to amplification of the effect of capacitance between the amplifier's input and output terminals, and is given by

<span class="mw-page-title-main">Electrical resonance</span> Canceling impedances at a particular frequency

Electrical resonance occurs in an electric circuit at a particular resonant frequency when the impedances or admittances of circuit elements cancel each other. In some circuits, this happens when the impedance between the input and output of the circuit is almost zero and the transfer function is close to one.

A phase-shift oscillator is a linear electronic oscillator circuit that produces a sine wave output. It consists of an inverting amplifier element such as a transistor or op amp with its output fed back to its input through a phase-shift network consisting of resistors and capacitors in a ladder network. The feedback network 'shifts' the phase of the amplifier output by 180 degrees at the oscillation frequency to give positive feedback. Phase-shift oscillators are often used at audio frequency as audio oscillators.

<span class="mw-page-title-main">Parasitic capacitance</span> Usually unwanted capacitance in a circuit

Parasitic capacitance or stray capacitance is the unavoidable and usually unwanted capacitance that exists between the parts of an electronic component or circuit simply because of their proximity to each other. When two electrical conductors at different voltages are close together, the electric field between them causes electric charge to be stored on them; this effect is capacitance.

<span class="mw-page-title-main">Pierce oscillator</span>

The Pierce oscillator is a type of electronic oscillator particularly well-suited for use in piezoelectric crystal oscillator circuits. Named for its inventor, George W. Pierce (1872–1956), the Pierce oscillator is a derivative of the Colpitts oscillator. Virtually all digital IC clock oscillators are of Pierce type, as the circuit can be implemented using a minimum of components: a single digital inverter, one resistor, two capacitors, and the quartz crystal, which acts as a highly selective filter element. The low manufacturing cost of this circuit and the frequency stability of quartz crystals make it advantageous for many consumer electronics applications.

The Miller theorem refers to the process of creating equivalent circuits. It asserts that a floating impedance element, supplied by two voltage sources connected in series, may be split into two grounded elements with corresponding impedances. There is also a dual Miller theorem with regards to impedance supplied by two current sources connected in parallel. The two versions are based on the two Kirchhoff's circuit laws.

<span class="mw-page-title-main">Transimpedance amplifier</span> Amplifier that converts current to voltage

In electronics, a transimpedance amplifier (TIA) is a current to voltage converter, almost exclusively implemented with one or more operational amplifiers. The TIA can be used to amplify the current output of Geiger–Müller tubes, photo multiplier tubes, accelerometers, photo detectors and other types of sensors to a usable voltage. Current to voltage converters are used with sensors that have a current response that is more linear than the voltage response. This is the case with photodiodes where it is not uncommon for the current response to have better than 1% nonlinearity over a wide range of light input. The transimpedance amplifier presents a low impedance to the photodiode and isolates it from the output voltage of the operational amplifier. In its simplest form a transimpedance amplifier has just a large valued feedback resistor, Rf. The gain of the amplifier is set by this resistor and because the amplifier is in an inverting configuration, has a value of -Rf. There are several different configurations of transimpedance amplifiers, each suited to a particular application. The one factor they all have in common is the requirement to convert the low-level current of a sensor to a voltage. The gain, bandwidth, as well as current and voltage offsets change with different types of sensors, requiring different configurations of transimpedance amplifiers.

References

  1. US 1624537,Colpitts, Edwin H.,"Oscillation generator",published 1 February 1918,issued 12 April 1927
  2. Gottlieb, Irving Gottlieb (1997). Practical Oscillator Handbook. US: Elsevier. p. 151. ISBN   0750631023.
  3. Carr, Joe (2002). RF Components and Circuits. US: Newnes. p. 127. ISBN   0750648449.
  4. Basak, A. (1991). Analogue Electronic Circuits and Systems. UK: Cambridge University Press. p. 153. ISBN   0521360463.
  5. Rohde, Ulrich L.; Matthias Rudolph (2012). RF / Microwave Circuit Design for Wireless Applications, 2nd Ed. John Wiley & Sons. pp. 745–746. ISBN   978-1118431405.
  6. Hayward, Wes (2004). "Figure 7.12 Colpitts oscillators using a JFET". Introduction to Radio Frequency Design. US: ARRL. p. 281. ISBN   0-87259-492-0.
  7. Razavi, B. Design of Analog CMOS Integrated Circuits. McGraw-Hill. 2001.
  8. Theron Jones. "Design a Crystal Oscillator to Match Your Application" Archived 2015-01-22 at the Wayback Machine . Maxim tutorial 5265 Sep 18, 2012, Maxim Integrated Products, Inc.
  9. Ayushi (2023-10-04). "Colpitts Oscillator - Principle, Working, Circuit Diagram". Electrical Volt. Retrieved 2023-12-27.
  10. Ayushi (2023-10-04). "Colpitts Oscillator - Principle, Working, Circuit Diagram". Electrical Volt. Retrieved 2023-12-27.
  11. "Colpitts Oscillator Circuit diagram & working. Frequency equation. Colpitts oscillator using opamp". Electronic Circuits and Diagrams-Electronic Projects and Design. 2009-10-12. Retrieved 2023-12-27.
  12. "Colpitts Oscillators | How it works, Application & Advantages". Electricity - Magnetism. 2023-10-26. Retrieved 2023-12-27.
  13. Chris Toumazou, George S. Moschytz, Barrie Gilbert. Trade-Offs in Analog Circuit Design: The Designer's Companion, Part 1.

Further reading