Cotylorhiza tuberculata | |
---|---|
Two examples of the species (upper from the Ionian Sea, Italy, lower from the Sant'Antioco, Sardinia) | |
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Cnidaria |
Class: | Scyphozoa |
Order: | Rhizostomeae |
Family: | Cepheidae |
Genus: | Cotylorhiza |
Species: | C. tuberculata |
Binomial name | |
Cotylorhiza tuberculata (Macri, 1778) | |
Synonyms [1] | |
|
Cotylorhiza tuberculata is a species of jellyfish of the phylum Cnidaria, also known as the Mediterranean jellyfish, Mediterranean jelly, or fried egg jellyfish. It is commonly found in the Mediterranean Sea, Aegean Sea, and Adriatic Sea.
Cotylorhiza tuberculata can reach 40 cm (16 in) in diameter, [2] but is usually less than 17 cm (6.7 in) wide. This jellyfish's sting has very little or no effect on humans; however, it can cause allergies in more sensitive people. These allergies usually involve itching and scratching in the stung area. The cnidarian's smooth, elevated central dome is surrounded by a gutter-like ring. Its marginal lappets are elongated and subrectangular. Each mouth arm bifurcates near its base and branches several times. In addition to some larger appendages, there are many short, club-shaped ones that bear disk-like ends. [3]
C. tuberculata are the most common jellyfish of their entire order in the Mediterranean Sea. They experience an annual life cycle marked by summer population blooms, [4] which is likely an adaptive result of the strong seasonal changes in their Mediterranean environment. [2] Their phases of development are quite similar to that of their other jellyfish counterparts. C. tuberculata's four main stages of growth include the swimming larvae known as planulae; younger, sessile polyps called scyphistomae; the undeveloped young adult intermediates known as ephyrae; and the adult jellyfish forms, called medusas. [5] In a given year, planulae are present from August to November, scyphistomae are present perennially, ephyrae can be seen from May to August, and medusa are prominent from July to November.
Planulae use their small cilia to propel them through the water, eventually settling on a hard sediment on which they develop into their polyp form. The scyphistomae acquire their photosynthetic algae symbionts during their preliminary development phase, although the mechanism for this is still unclear. These microorganisms live primarily in the mesoglea and lining of the cnidarian's gastrovascular system, bolstering oxygen production, and remain with the jellyfish for the rest of their lifespans. The polyps also undergo asexual reproduction to create more polyps; [2] parts of each polyp will eventually metamorphose [5] into ephyrae, which range between 1.7 and 4.2 mm in diameter. Young medusa take 8–10 weeks to reach an initial diameter of 3 cm, and then will grow by approximately 3–4 cm per week until reaching their final adult size. Gradually, the medusa develop with an average final diameter of approximately 35 cm.
Sexual reproduction between adult medusas typically occurs between August and October. Female C. tuberculata are internally fertilized with sperm from the mouth arm appendages of their male counterparts, and after a gestation period, eventually release large numbers of planulae into the water. [2]
With age, the adult C. tuberculata become increasingly damaged, mainly in the central dome of their top umbrella area. While the leading cause of medusa damage is wave-driven and wind-driven abrasion, the next most prominent modes of injury are anthropogenic. Motor boats and fishing nets are prominent causes of injury for these cnidarians, often leading to severe damage. This harm is a mild setback for jellyfish that have not yet finished growing, and when they are able to regenerate the injured anatomy, it often grows back asymmetrically. Older fried egg jellyfish are distinguished by their physical deterioration; their mesoglea are often delicate with a visibly broken exumbrella and their coloration fades significantly. [2]
The endosymbiotic, photosynthetic algae that C. tuberculata hosts in its body are paramount to the jellyfish's prosperity. These mutualistic microorganisms are also known as zooxanthellae, originating from the dinoflagellate phylum, and they commonly engage in symbiotic relationships with many types of jellyfish. While the cnidarian hosts provide shelter for these symbionts, the dinoflagellates in return use their photosynthetic abilities to provide the C. tuberculata with energy for usage and storage. Fatty acids, for example, are the primary macromolecules for energy storage in cnidarians, and are obtained mainly from their carbon-fixing symbionts. This mutualistic relationship is so crucial to the Mediterranean jellyfish's growth and survival that the preliminary step of premature medusa formation will not initiate without the presence of zooxanthellae. [4]
C. tuberculata primarily consume minuscule aquatic organisms, often a mixture of phytoplankton and zooplankton. They do not demonstrate a very high feeding diversity on the taxonomic level; it has been recorded that anywhere between 69% and 82% of their diet consists of organisms associated with the genus Spiroplasma. These prokaryotes have also been found in the diets of several other jellyfish species. Furthermore, the C. tuberculata's diet likely consists of only three to four main taxa of microplankton. The jellyfish takes in these tiny organisms through its mouth arms, from where they travel to its stomach. The interconnectedness of the Mediterranean jelly and its surrounding waters allows for an easy flow of plankton into its gastric cavity. [6]
One of the main issues created by annual blooms of C. tuberculata is an interference with human recreational and financial activities. The usual water-related activities of tourism, in addition to more commercial activities such as fishing, are often disrupted due to the sheer number of jellyfish in the waters. This often results in the removal of thousands of Mediterranean jellies from the waters by coastal officials in the summers by fishing boats or large nets.
Another possibility raised by the prevalence of jellyfish, however, is their usefulness to humankind. C. tuberculata have been studied due to their specified cytotoxicity in regards to certain breast cancer cells, which is made possible due to the organism's efficient intercellular gap junction communication. While further studies have been proposed to further research jellies' cytotoxicity in targeting breast cancer, there still is not much investigation on the topic. Since a main objective in cancer research is to create treatments that selectively kill malignant cells while leaving healthy ones intact, Cotylhoriza tuberculata may become a model organism for the treatment of those human ailments. [4]
Cnidaria is a phylum under kingdom Animalia containing over 11,000 species of aquatic animals found both in fresh water and marine environments, including jellyfish, hydroids, sea anemones, corals and some of the smallest marine parasites. Their distinguishing features are a decentralized nervous system distributed throughout a gelatinous body and the presence of cnidocytes or cnidoblasts, specialized cells with ejectable flagella used mainly for envenomation and capturing prey. Their bodies consist of mesoglea, a non-living, jelly-like substance, sandwiched between two layers of epithelium that are mostly one cell thick. Cnidarians are also some of the only animals that can reproduce both sexually and asexually.
Jellyfish, also known as sea jellies, are the medusa-phase of certain gelatinous members of the subphylum Medusozoa, which is a major part of the phylum Cnidaria.
The Scyphozoa are an exclusively marine class of the phylum Cnidaria, referred to as the true jellyfish.
Aurelia aurita is a species of the family Ulmaridae. All species in the genus are very similar, and it is difficult to identify Aurelia medusae without genetic sampling; most of what follows applies equally to all species of the genus.
Zooxanthellae is a colloquial term for single-celled dinoflagellates that are able to live in symbiosis with diverse marine invertebrates including demosponges, corals, jellyfish, and nudibranchs. Most known zooxanthellae are in the genus Symbiodinium, but some are known from the genus Amphidinium, and other taxa, as yet unidentified, may have similar endosymbiont affinities. The true Zooxanthella K.brandt is a mutualist of the radiolarian Collozoum inerme and systematically placed in Peridiniales. Another group of unicellular eukaryotes that partake in similar endosymbiotic relationships in both marine and freshwater habitats are green algae zoochlorellae.
The aggregating anemone, or clonal anemone, is the most abundant species of sea anemone found on rocky, tide swept shores along the Pacific coast of North America. This cnidarian hosts endosymbiotic algae called zooxanthellae that contribute substantially to primary productivity in the intertidal zone. The aggregating anemone has become a model organism for the study of temperate cnidarian-algal symbioses.
Medusozoa is a clade in the phylum Cnidaria, and is often considered a subphylum. It includes the classes Hydrozoa, Scyphozoa, Staurozoa and Cubozoa, and possibly the parasitic Polypodiozoa. Medusozoans are distinguished by having a medusa stage in their often complex life cycle, a medusa typically being an umbrella-shaped body with stinging tentacles around the edge. With the exception of some Hydrozoa, all are called jellyfish in their free-swimming medusa phase.
Pelagia noctiluca is a jellyfish in the family Pelagiidae and the only currently recognized species in the genus Pelagia. It is typically known in English as the mauve stinger, but other common names are purple-striped jelly, purple stinger, purple people eater, purple jellyfish, luminous jellyfish and night-light jellyfish. In Greek, pelagia means "(she) of the sea", from pelagos "sea, open sea"; in Latin noctiluca is the combining form of nox, "night"", and lux, "light"; thus, Pelagia noctiluca can be described as a marine organism with the ability to glow in the dark (bioluminescence). It is found worldwide in tropical and warm temperate seas, although it is suspected that records outside the North Atlantic region, which includes the Mediterranean and Gulf of Mexico, represent closely related but currently unrecognized species.
Phacellophora camtschatica, commonly known as the fried egg jellyfish or egg-yolk jellyfish, is a very large jellyfish in the family Phacellophoridae. This species can be easily identified by the yellow coloration in the center of its body which closely resembles an egg yolk, hence its common name. Some individuals can have a bell close to 60 cm (2 ft) in diameter, and most individuals have 16 clusters of up to a few dozen tentacles, each up to 6 m (20 ft) long. A smaller jellyfish, Cotylorhiza tuberculata, typically found in warmer water, particularly in the Mediterranean Sea, is also popularly called a fried egg jellyfish. Also, P. camtschatica is sometimes confused with the Lion's mane jellyfish.
Cotylorhiza is a genus of true jellyfish from the family Cepheidae. The genus is found in the central-east Atlantic, Mediterranean, and western Indian Ocean.
Turritopsis dohrnii, also known as the immortal jellyfish, is a species of small, biologically immortal jellyfish found worldwide in temperate to tropic waters. It is one of the few known cases of animals capable of reverting completely to a sexually immature, colonial stage after having reached sexual maturity as a solitary individual. Others include the jellyfish Laodicea undulata and species of the genus Aurelia.
The spotted jelly, lagoon jelly, golden medusa, or Papuan jellyfish, is a species of jellyfish from the Indo-Pacific oceans. Like corals, sea anemones, and other sea jellies, it belongs to the phylum Cnidaria. Mastigias papua is one of the numerous marine animals living in symbiosis with zooxanthellae, a photosynthetic alga. Mastigias papua is one of the numerous marine animals living in symbiosis with zooxanthellae, a photosynthetic algae.
Chrysaora hysoscella, the compass jellyfish, is a common species of jellyfish that inhabits coastal waters in temperate regions of the northeastern Atlantic Ocean, including the North Sea and Mediterranean Sea. In the past it was also recorded in the southeastern Atlantic, including South Africa, but this was caused by confusion with close relatives; C. africana, C. fulgida and an undescribed species tentatively referred to as "C. agulhensis".
Aurelia is a genus of jellyfish that are commonly called moon jellies, which are in the class Scyphozoa. There are currently 25 accepted species and many that are still not formally described.
Catostylus mosaicus is also known as the Jelly blubber or Blue blubber jellyfish. The jelly blubber is distinguishable by its color, which ranges from light blue to a dark blue or purple, and its large (250-300mm), rounded bell which pulses in a staccato rhythm. It occurs along the coastline of Eastern Australia in estuaries and shallow bays, and often blooms to high abundance.
Cassiopea andromeda is one of many cnidarian species called the upside-down jellyfish. It usually lives in intertidal sand or mudflats, shallow lagoons, and around mangroves. This jellyfish, often mistaken for a sea anemone, usually keeps its mouth facing upward. Its yellow-brown bell, which has white or pale streaks and spots, pulsates to run water through its arms for respiration and to gather food.
Cassiopea xamachana, commonly known as the upside-down jellyfish, is a species of jellyfish in the family Cassiopeidae. It is found in warm parts of the western Atlantic Ocean, the Caribbean Sea, and the Gulf of Mexico. It was first described by the American marine biologist Henry Bryant Bigelow in 1892.
The South American sea nettle is a species of jellyfish from the family Pelagiidae. It is found from the Pacific coast of Peru, south along Chile's coast to Tierra del Fuego, and north along the Atlantic coast of Argentina, with a few records from Uruguay. Despite its common name, it is not the only sea nettle in South America. For example, C. lactea is another type of sea nettle in this region. Historically, C. plocamia was often confused with C. hysoscella, a species now known to be restricted to the northeast Atlantic. C. plocamia is a large jellyfish, up to 1 m in bell diameter, although most mature individuals only are 25–40 cm (10–16 in).
Clytia hemisphaerica is a small hydrozoan-group cnidarian, about 1 cm in diameter, that is found in the Mediterranean Sea and the North-East Atlantic Ocean. Clytia has the free-swimming jellyfish form typical of the Hydrozoa, as well as vegetatively propagating polyps.
Cassiopea ornata are one of many Cnidarian species called the upside-down jellyfish. This pelagic jellyfish primarily lives in tropical waters, off the coast of Australia in shallow lagoons and around mangrove trees. The name "upside-down jellyfish" comes from the fact that it appears to be upside-down in its natural state—resting on its bell. Its bell is a golden/brown color and the tentacles vary with different shades of yellow. While the sighting of this particular species is rare, it is usually mistaken for vegetation like the other species in genus Cassiopea.