Dan Burghelea

Last updated
Antonelli, Peter L.; Burghelea, Dan; Kahn, Peter J. (1971). The concordance-homotopy groups of geometric automorphism groups. Lecture Notes in Mathematics. Vol. 215. Berlin, New York: Springer-Verlag. doi:10.1007/BFb0061176. ISBN   978-0387055602. MR   0358834.
  • Burghelea, Dan; Hangan, Theodor; Moscovici, Henri; Verona, Andrei (1973). Introducere în topologia diferențială (in Romanian). București: Editura științifică. OCLC   22096344.
  • Burghelea, Dan; Lashof, Richard; Rothenberg, Melvin (1975). Groups of Automorphisms of Manifolds. Lecture Notes in Mathematics. Vol. 473. Berlin, New York: Springer-Verlag. doi:10.1007/bfb0079981. ISBN   978-3-540-07182-2. MR   0380841. OCLC   1527692.
  • Burghelea, Dan (2017). New topological invariants for real- and angle-valued maps: an alternative to MorseNovikov theory. Hackensack, NJ: World Scientific. doi:10.1142/9254. ISBN   978-9814618267. MR   3645481.
  • References

    1. "Personalități. Foști elevi – evidențiați în diferite domenii". www.lahovari.com (in Romanian). Alexandru Lahovari National College . Retrieved May 26, 2025.
    2. Șimonca, Ovidiu (July 8, 2011), ""În generația mea, matematica a reprezentat o opțiune fericită"", Observator Cultural (in Romanian), no. 582, retrieved May 26, 2025
    3. Bonciocat, Anca. "Institutul de Matematică este casa mea din București". imar.ro (in Romanian). Institute of Mathematics of the Romanian Academy . Retrieved May 27, 2025.
    4. "Dan Burghelea" (PDF).
    5. "Professor Dan Burghelea - Doctor Honoris Causa" (PDF).
    6. "Dan Burghelea Publications" (PDF).
    7. "Hilbert manifold".
    8. Burghelea, Dan; Kuiper, Nicolaas H. (1969). "Hilbert Manifolds". Annals of Mathematics . 90 (3): 379–417. doi:10.2307/1970743. JSTOR   1970743.
    9. Burghelea, D. (1979). "The rational homotopy groups of Diff (M) and Homeo (Mn) in the stability range". Algebraic Topology Aarhus 1978. Lecture Notes in Mathematics. Vol. 763. pp. 604–626. doi:10.1007/BFb0088105. ISBN   978-3-540-09721-1.
    10. Burghelea, D.; Lashof, R. (1982). "Geometric transfer and the homotopy type of the automorphism groups of a manifold". Transactions of the American Mathematical Society. 269: 1. doi: 10.1090/S0002-9947-1982-0637027-4 .
    11. Burghelea, D.; Fiedorowicz, Z. (1986). "Cyclic homology and algebraic K-theory of spaces—II". Topology . 25 (3): 303–317. doi:10.1016/0040-9383(86)90046-7.
    12. "The cyclic homology of the group rings".
    13. Burghelea, Dan; Vigué Poirrier, Micheline (1988). "Cyclic homology of commutative algebras I". Algebraic Topology Rational Homotopy. Lecture Notes in Mathematics. Vol. 1318. pp. 51–72. doi:10.1007/BFb0077794. ISBN   978-3-540-19340-1.
    14. Burghelea, D.; Friedlander, L.; Kappeler, T. (1992). "Meyer-vietoris type formula for determinants of elliptic differential operators". Journal of Functional Analysis . 107: 34–65. doi:10.1016/0022-1236(92)90099-5.
    15. Burghelea, D.; Kappeler, T.; McDonald, P.; Friedlander, L. (1996). "Analytic and Reidemeister torsion for representations in finite type Hilbert modules". Geometric and Functional Analysis . 6 (5): 751–859. arXiv: dg-ga/9502001 . doi:10.1007/BF02246786. S2CID   16656673.
    16. Burghelea, Dan; Haller, Stefan (2007). "Complex-valued Ray–Singer torsion". Journal of Functional Analysis . 248: 27–78. arXiv: math/0604484 . doi: 10.1016/j.jfa.2007.03.027 . S2CID   31221717.
    17. Burghelea, Dan; Haller, Stefan (2008). "Torsion, as a Function on the Space of Representations". C*-algebras and Elliptic Theory II. Trends in Mathematics. pp. 41–66. arXiv: math/0507587 . doi:10.1007/978-3-7643-8604-7_2. ISBN   978-3-7643-8603-0. S2CID   160308.
    18. Burghelea, Dan; Haller, Stefan (2013). "Topology of angle valued maps, bar codes and Jordan blocks". arXiv: 1303.4328 [math.AT].
    19. Dan Burghelea at the Mathematics Genealogy Project
    20. "Professor Dan Burghelea" (PDF).
    21. "Decret nr. 370 din 11 iunie 2003", Monitorul Oficial (in Romanian), no. 420, June 16, 2003, retrieved May 28, 2025
    22. "Honorary members of the "Simion Stoilow" Institute of Mathematics of the Romanian Academy".
    23. "Ana H Burghelea".
    Dan Burghelea
    Dan Burghelea-May 2025 (5).png
    Dan Burghelea, 2025
    Born (1943-07-30) July 30, 1943 (age 81)
    NationalityRomanian-American
    Occupation(s)Mathematician, academic and researcher
    Spouse
    Ana Burghelea
    (m. 1965)
    Children1
    AwardsDoctor Honoris-Causa, West University of Timișoara
    National Order of Faithful Service
    Distinction Academic Merit, Romanian Academy of Sciences
    Medal of Honor, Romanian Mathematical Society
    Academic background
    Alma mater University of Bucharest
    Institute of Mathematics of the Romanian Academy
    Thesis Hilbert manifolds (1968)
    Doctoral advisor Miron Nicolescu