David Snoke

Last updated
David W. Snoke
Scientific career
Fields Physics
Institutions University of Pittsburgh in Pennsylvania
American Physical Society

David W. Snoke is a physics professor at the University of Pittsburgh in the Department of Physics and Astronomy. In 2006 he was elected a Fellow of the American Physical Society "for his pioneering work on the experimental and theoretical understanding of dynamical optical processes in semiconductor systems." [1] In 2004 he co-wrote a controversial paper with prominent intelligent design proponent Michael Behe. In 2007, his research group was the first to report Bose-Einstein condensation of polaritons in a trap. [2] David Snoke and theoretical physicist Jonathan Keeling recently published an article announcing a new era for polariton condensates saying that polaritons are arguably the "...best hope for harnessing the strange effects of quantum condensation and superfluidity in everyday applications." [3]

Contents

Academic career

Snoke received his bachelor's degree in physics from Cornell University and his PhD in physics from the University of Illinois at Urbana-Champaign. He has worked for The Aerospace Corporation and was a visiting scientist and Fellow at the Max Planck Institute. [4]

His experimental and theoretical research has focused on fundamental quantum mechanical processes in semiconductor optics, i.e. phase transitions of electrons and holes. Two main thrusts have been Bose-Einstein condensation of excitons [5] [6] [7] [8] [9] and polaritons. [10] [2] He has also had minor efforts in numerical biology, and has published on the topic of the interaction of science and theology.

Bose-Einstein Condensation of Polaritons

Figure 1: Energy distribution of polaritons in equilibrium, at various densities. The solid lines are fits to the equilibrium Bose-Einstein distribution. The two sets of data at the highest densities are not fit to the Bose-Einstein distribution because they have a condensate which is strongly altered in its momentum distribution by interactions of the particles. From Ref. EnergyDistPolaritonsInEquilibrium.png
Figure 1: Energy distribution of polaritons in equilibrium, at various densities. The solid lines are fits to the equilibrium Bose-Einstein distribution. The two sets of data at the highest densities are not fit to the Bose-Einstein distribution because they have a condensate which is strongly altered in its momentum distribution by interactions of the particles. From Ref.

In 2007, Snoke's research group at the University of Pittsburgh used stress to trap polaritons in confined regions, [2] similar to the way atoms are confined in traps for Bose–Einstein condensation experiments. The observation of polariton condensation in a trap was significant because the polaritons were displaced from the laser excitation spot, so that the effect could not be attributed to a simple nonlinear effect of the laser light. Later milestones from Snoke and collaborators include showing a clear difference between polariton condensation and standard lasing, [12] showing quantized circulation of a polariton condensate in a ring, [13] and the first clear demonstration of Bose-Einstein condensation of polaritons in equilibrium [11] (see Figure 1), in collaboration with the Keith Nelson group at MIT. Prior to this result, polariton condensates were always observed out of equilibrium. [14] [15] For a general discussion of Bose-Einstein condensation of polaritons, see this page.

Nonequilibrium dynamics

The basic questions of how systems out of equilibrium approach equilibrium (“equilibration”, or “thermalization”) have involved longstanding deep questions of physics, sometimes called the thermodynamic “arrow of time,” with debates going back to Boltzmann. In 1989 Snoke was one of the first to perform simulations of the equilibration of a Bose-Einstein condensate, using numerical solution of the quantum Boltzmann equation . [16] In 1994 Snoke showed agreement of time-resolved experimental measurements of a particle distribution to solution of the quantum Boltzmann equation . [17] In 2012 he and theorist Steve Girvin published a seminal paper [18] on the justification of the Second Law of Thermodynamics based on analysis of the quantum Boltzmann equation, which has impacted the philosophy of the Second Law. [19] Other work by Snoke has included nonequilibrium dynamics of electron plasma [20] and the Mott transition from exciton gas to electron-hole plasma. [21]

Numerical biology

In 2004, Snoke co-authored an article with Michael Behe, a senior fellow of the Discovery Institute's Center for Science and Culture, in the scientific journal Protein Science, [22] which received widespread criticism. Snoke's contribution to the paper was an appendix which verified the numerical results with analytical calculations that showed the relevant power law, namely that for a novel feature requiring multiple neutral mutations, the time to fixation has a sublinear dependence on population size.

Behe has stated that the results of the paper support his notion of irreducible complexity, based on the calculation of the probability of mutations required for evolution to succeed. However, the published version did not address the concept directly; according to Behe, all references to irreducible complexity were eliminated prior to the paper's publication at the behest of the reviewers. [23] Michael Lynch authored a response, [24] to which Behe and Snoke responded. [25] Protein Science discussed the papers in an editorial. [26] Protein Science received letters that "contained many points of disagreement with the Behe and Snoke article", including the points that: [26]

The paper's assumptions have been severely criticised and the conclusions it draws from its mathematical model have been both criticised and contradicted:

On May 7, 2005, Behe described the paper in presenting arguments for irreducible complexity in his testimony at the Kansas evolution hearings. [30] At the Kitzmiller v. Dover Area School District trial later that year it was the one article referenced by both Behe and Scott Minnich as supporting intelligent design. In his ruling, Judge Jones noted that "A review of the article indicates that it does not mention either irreducible complexity or ID. In fact, Professor Behe admitted that the study which forms the basis for the article did not rule out many known evolutionary mechanisms and that the research actually might support evolutionary pathways if a biologically realistic population size were used." [31]

In 2014 David Snoke, along with coauthors Jeffrey Cox and Donald Petcher, published a numerical study of the evolution of novel structures, in the journal Complexity. [32] The model claimed to address the fundamental problem of the tradeoff of the cost of allowing novel structures which are not yet functional, versus the benefit of the eventual new function.

Science and theology

His book, A Biblical Case for an Old Earth (Baker Books, 2006) was described in a review by Law Professor David W. Opderbeck, in the American Scientific Affiliation's Perspectives on Science and Christian Faith as "succeed[ing] admirably" in "establish[ing] that the 'day-age' view is a valid alternative for Christians who hold to biblical inerrancy", but as "less persuasive" at "argu[ing] for a concordist understanding of the Genesis texts and modern science." [33] Snoke was elected a Fellow of the American Scientific Affiliation in 2006. [4] In 2014 he published a review article for the Discovery Institute, [34] arguing that the prevailing paradigm of modern systems biology favors an intelligent design perspective, namely that systems biologists commonly assume a “good design” paradigm.

Bibliography

Related Research Articles

<span class="mw-page-title-main">Bose–Einstein condensate</span> State of matter

In condensed matter physics, a Bose–Einstein condensate (BEC) is a state of matter that is typically formed when a gas of bosons at very low densities is cooled to temperatures very close to absolute zero. Under such conditions, a large fraction of bosons occupy the lowest quantum state, at which microscopic quantum mechanical phenomena, particularly wavefunction interference, become apparent macroscopically. More generally, condensation refers to the appearance of macroscopic occupation of one or several states: for example, in BCS theory, a superconductor is a condensate of Cooper pairs. As such, condensation can be associated with phase transition, and the macroscopic occupation of the state is the order parameter.

<span class="mw-page-title-main">Polariton</span> Quasiparticles arising from EM wave coupling

In physics, polaritons are quasiparticles resulting from strong coupling of electromagnetic waves with an electric or magnetic dipole-carrying excitation. They are an expression of the common quantum phenomenon known as level repulsion, also known as the avoided crossing principle. Polaritons describe the crossing of the dispersion of light with any interacting resonance. To this extent polaritons can also be thought of as the new normal modes of a given material or structure arising from the strong coupling of the bare modes, which are the photon and the dipolar oscillation. The polariton is a bosonic quasiparticle, and should not be confused with the polaron, which is an electron plus an attached phonon cloud.

<span class="mw-page-title-main">Roton</span> Collective excitation in superfluid helium-4 (a quasiparticle)

In theoretical physics, a roton is an elementary excitation, or quasiparticle, seen in superfluid helium-4 and Bose–Einstein condensates with long-range dipolar interactions or spin-orbit coupling. The dispersion relation of elementary excitations in this superfluid shows a linear increase from the origin, but exhibits first a maximum and then a minimum in energy as the momentum increases. Excitations with momenta in the linear region are called phonons; those with momenta close to the minimum are called rotons. Excitations with momenta near the maximum are called maxons.

<span class="mw-page-title-main">Wolfgang Ketterle</span> German physicist

Wolfgang Ketterle is a German physicist and professor of physics at the Massachusetts Institute of Technology (MIT). His research has focused on experiments that trap and cool atoms to temperatures close to absolute zero, and he led one of the first groups to realize Bose–Einstein condensation in these systems in 1995. For this achievement, as well as early fundamental studies of condensates, he was awarded the Nobel Prize in Physics in 2001, together with Eric Allin Cornell and Carl Wieman.

<span class="mw-page-title-main">Magnon</span> Spin 1 quasiparticle; quantum of a spin wave

A magnon is a quasiparticle, a collective excitation of the spin structure of an electron in a crystal lattice. In the equivalent wave picture of quantum mechanics, a magnon can be viewed as a quantized spin wave. Magnons carry a fixed amount of energy and lattice momentum, and are spin-1, indicating they obey boson behavior.

<span class="mw-page-title-main">Quantum vortex</span> Quantized flux circulation of some physical quantity

In physics, a quantum vortex represents a quantized flux circulation of some physical quantity. In most cases, quantum vortices are a type of topological defect exhibited in superfluids and superconductors. The existence of quantum vortices was first predicted by Lars Onsager in 1949 in connection with superfluid helium. Onsager reasoned that quantisation of vorticity is a direct consequence of the existence of a superfluid order parameter as a spatially continuous wavefunction. Onsager also pointed out that quantum vortices describe the circulation of superfluid and conjectured that their excitations are responsible for superfluid phase transitions. These ideas of Onsager were further developed by Richard Feynman in 1955 and in 1957 were applied to describe the magnetic phase diagram of type-II superconductors by Alexei Alexeyevich Abrikosov. In 1935 Fritz London published a very closely related work on magnetic flux quantization in superconductors. London's fluxoid can also be viewed as a quantum vortex.

Analog models of gravity are attempts to model various phenomena of general relativity using other physical systems such as acoustics in a moving fluid, superfluid helium, or Bose–Einstein condensate; gravity waves in water; and propagation of electromagnetic waves in a dielectric medium. These analogs serve to provide new ways of looking at problems, permit ideas from other realms of science to be applied, and may create opportunities for practical experiments within the analog that can be applied back to the source phenomena.

Polariton superfluid is predicted to be a state of the exciton-polaritons system that combines the characteristics of lasers with those of excellent electrical conductors. Researchers look for this state in a solid state optical microcavity coupled with quantum well excitons. The idea is to create an ensemble of particles known as exciton-polaritons and trap them. Wave behavior in this state results in a light beam similar to that from a laser but possibly more energy efficient.

In quantum mechanics, macroscopic quantum self-trapping is when two Bose-Einstein condensates weakly linked by an energy barrier which particles can tunnel through, nevertheless end up with a higher average number of bosons on one side of the junction than the other. The junction of two Bose–Einstein condensates is mostly analogous to a Josephson junction, which is made of two superconductors linked by a non-conducting barrier. However, superconducting Josephson junctions do not display macroscopic quantum self-trapping, and thus macroscopic quantum self-tunneling is a distinguishing feature of Bose-Einstein condensate junctions. Self-trapping occurs when the self-interaction energy between the Bosons is larger than a critical value called .

<span class="mw-page-title-main">Yoshihisa Yamamoto (scientist)</span> Japanese applied physicist (born 1950)

Yoshihisa Yamamoto is the director of Physics & Informatics Laboratories, NTT Research, Inc. He is also Professor (Emeritus) at Stanford University and National Institute of Informatics (Tokyo).

A polariton laser is a novel type of laser source that exploits the coherent nature of Bose condensates of exciton-polaritons in semiconductors to achieve ultra-low threshold lasing.

In physics, the exciton–polariton is a type of polariton; a hybrid light and matter quasiparticle arising from the strong coupling of the electromagnetic dipolar oscillations of excitons and photons. Because light excitations are observed classically as photons, which are massless particles, they do not therefore have mass, like a physical particle. This property makes them a quasiparticle.

Bose–Einstein condensation can occur in quasiparticles, particles that are effective descriptions of collective excitations in materials. Some have integer spins and can be expected to obey Bose–Einstein statistics like traditional particles. Conditions for condensation of various quasiparticles have been predicted and observed. The topic continues to be an active field of study.

<span class="mw-page-title-main">Sadhan Kumar Adhikari</span> Indian academic

Sadhan Kumar Adhikari is a Brazilian-Indian professor of physics, since 1991, at the Institute of Theoretical Physics (IFT) of the São Paulo State University (UNESP).

The quantum Boltzmann equation, also known as the Uehling-Uhlenbeck equation, is the quantum mechanical modification of the Boltzmann equation, which gives the nonequilibrium time evolution of a gas of quantum-mechanically interacting particles. Typically, the quantum Boltzmann equation is given as only the “collision term” of the full Boltzmann equation, giving the change of the momentum distribution of a locally homogeneous gas, but not the drift and diffusion in space. It was originally formulated by L.W. Nordheim (1928), and by and E. A. Uehling and George Uhlenbeck (1933).

Bose–Einstein condensation of polaritons is a growing field in semiconductor optics research, which exhibits spontaneous coherence similar to a laser, but through a different mechanism. A continuous transition from polariton condensation to lasing can be made similar to that of the crossover from a Bose–Einstein condensate to a BCS state in the context of Fermi gases. Polariton condensation is sometimes called “lasing without inversion”.

<span class="mw-page-title-main">Vitaly Kocharovsky</span> Russian physicist

Vitaly Kocharovsky is a Russian-American physicist, academic and researcher. He is a Professor of Physics and Astronomy at Texas A&M University.

<span class="mw-page-title-main">Vladimir Kocharovsky</span>

Vladimir Kocharovsky is a Russian physicist, academic and researcher. He is a Head of the Astrophysics and Space Plasma Physics Department at the Institute of Applied Physics of the Russian Academy of Sciences and a professor at N.I. Lobachevsky State University of Nizhny Novgorod.

Tin-Lun "Jason" Ho is a Chinese-American theoretical physicist, specializing in condensed matter theory, quantum gases, and Bose-Einstein condensates. He is known for the Mermin-Ho relation.

Turbulent phenomena are observed universally in energetic fluid dynamics, associated with highly chaotic fluid motion involving excitations spread over a wide range of length scales. The particular features of turbulence are dependent on the fluid and geometry, and specifics of forcing and dissipation.

References

  1. Archive (1995-present), American Physical Society
  2. 1 2 3 R. Balili; V. Hartwell; D.W. Snoke; L. Pfeiffer; K. West (2007). "Bose-Einstein Condensation of Microcavity Polaritons in a Trap". Science . 316 (5827): 1007–10. Bibcode:2007Sci...316.1007B. doi:10.1126/science.1140990. PMID   17510360. S2CID   2682022.
  3. David Snoke; Jonathan Keeling (2017). "The new era of polariton condensates". Physics Today. 70 (10): 54. Bibcode:2017PhT....70j..54S. doi:10.1063/PT.3.3729. S2CID   125773659.
  4. 1 2 "ASA newsletters, November/December 2006" (PDF).{{cite journal}}: Cite journal requires |journal= (help)
  5. D.W. Snoke; W.W. Ruehle; Y.-C. Lu; E. Bauser (1992). "Nonthermal Distribution of Electrons on Picosecond Timescale in GaAs". Physical Review Letters . 68 (7): 990–993. Bibcode:1992PhRvL..68..990S. doi:10.1103/PhysRevLett.68.990. PMID   10046050.
  6. D.W. Snoke (1992). "Density dependence of electron scattering at low density". Physical Review B . 50 (16): 11583–11591. Bibcode:1994PhRvB..5011583S. doi:10.1103/PhysRevB.50.11583. PMID   9975291.
  7. D.W. Snoke; D. Braun; M. Cardona (1991). "Carrier thermalization in Cu2O: Phonon emission by excitons". Physical Review B . 44 (7): 2991–3000. Bibcode:1991PhRvB..44.2991S. doi:10.1103/PhysRevB.44.2991. PMID   9999890.
  8. D.W. Snoke; J.D. Crawford (1995). "Hysteresis in the Mott transition between plasma and insulating gas". Physical Review E . 52 (6): 5796–5799. arXiv: cond-mat/9507116 . Bibcode:1995PhRvE..52.5796S. doi:10.1103/PhysRevE.52.5796. PMID   9964092. S2CID   5995968.
  9. D.W. Snoke (2008). "Hysteresis in the Mott transition between plasma and insulating gas". Solid State Communications. 146 (1): 73. arXiv: 0709.1415 . Bibcode:2008SSCom.146...73S. doi:10.1016/j.ssc.2008.01.012. S2CID   17313346.
  10. Z. Voros; D. Snoke; L. Pfeiffer; K. West (2006). "Trapping Excitons in a Two-Dimensional In-Plane Harmonic Potential: Experimental Evidence for Equilibration of Indirect Excitons". Physical Review Letters . 97 (1): 016803. Bibcode:2006PhRvL..97a6803V. doi:10.1103/PhysRevLett.97.016803. PMID   16907396.
  11. 1 2 Y. Sun; et al. (2017). "Bose-Einstein Condensation of long-lifetime polaritons in thermal equilibrium". Physical Review Letters. 118 (1): 016602. arXiv: 1601.02581 . Bibcode:2017PhRvL.118a6602S. doi:10.1103/PhysRevLett.118.016602. PMID   28106443. S2CID   5668343.
  12. B. Nelsen; R. Balili; D.W. Snoke; L. Pfeiffer; K. West (2009). "Lasing and polariton condensation: Two distinct transitions in GaAs microcavities with stress traps". Journal of Applied Physics. 105 (12): 122414–122414–5. Bibcode:2009JAP...105l2414N. doi: 10.1063/1.3140822 .
  13. G.Q. Liu; D.W. Snoke; A. Daley; L. Pfeiffer; K. West (2015). "A new type of half-quantum circulation in a macroscopic polariton spinor ring condensate". Proc. Natl. Acad. Sci. 112 (9): 2676–81. arXiv: 1402.4339 . Bibcode:2015PNAS..112.2676L. doi: 10.1073/pnas.1424549112 . PMC   4352789 . PMID   25730875.
  14. See e.g.; T. Byrnes; Na Young Kim; Y. Yamamoto (2014). "Exciton=-polariton condensates". Nature Physics. 10 (11): 803. arXiv: 1411.6822 . Bibcode:2014NatPh..10..803B. doi:10.1038/nphys3143. S2CID   118545281.
  15. See also; D. Sanvitto; S. Kéna-Cohen (2016). "The road towards polaritonic devices". Nature Materials. 15 (10): 1061–73. Bibcode:2016NatMa..15.1061S. doi:10.1038/nmat4668. PMID   27429208.
  16. D.W. Snoke; J.P. Wolfe (1989). "Population-Dynamics of a Bose-Gas Near Saturation". Physical Review B. 39 (7): 4030–4037. Bibcode:1989PhRvB..39.4030S. doi:10.1103/PhysRevB.39.4030. PMID   9948737.
  17. D.W. Snoke; D. Braun; M. Cardona (1991). "Carrier thermalization in Cu_2O: Phonon emission by excitons". Physical Review B. 44 (7): 2991–3000. Bibcode:1991PhRvB..44.2991S. doi:10.1103/PhysRevB.44.2991. PMID   9999890.
  18. D.W. Snoke; G.Q. Liu; S.M. Girvin (2012). "The basis of the Second Law of thermodynamics in quantum field theory". Annals of Physics. 327 (7): 1825. arXiv: 1112.3009 . Bibcode:2012AnPhy.327.1825S. doi:10.1016/j.aop.2011.12.016. S2CID   118666925.
  19. Brown, Harvey R. (2017). "Section 8: Once and for all: the curious role of probability in the Past Hypothesis".
  20. D.W. Snoke (1992). "Density dependence of electron scattering at low density". Physical Review B. 50 (16): 11583–11591. Bibcode:1994PhRvB..5011583S. doi:10.1103/PhysRevB.50.11583. PMID   9975291.
  21. D.W. Snoke (2008). "Predicting the ionization threshold for carriers in excited semiconductors". Solid State Communications. 146 (1–2): 73–77. arXiv: 0709.1415 . Bibcode:2008SSCom.146...73S. doi:10.1016/j.ssc.2008.01.012. S2CID   17313346.
  22. Michael Behe and David W. Snoke (2004). "Simulating evolution by gene duplication of protein features that require multiple amino acid residues". Protein Science. 13 (10): 2651–2664. doi:10.1110/ps.04802904. PMC   2286568 . PMID   15340163.
  23. Michael J. Behe, Day 10, morning testimony, in Kitzmiller v. Dover Area School District, trial transcript page 46 Archived 2008-08-20 at the Wayback Machine
  24. Michael Lynch (2005). "Simple evolutionary pathways to complex proteins". Protein Science. 14 (9): 2217–2225. doi:10.1110/ps.041171805. PMC   2253472 . PMID   16131652.
  25. Michael Behe; David W. Snoke (2005). "A response to Michael Lynch". Protein Science. 14 (9): 2226–2227. doi:10.1110/ps.051674105. PMC   2253464 .
  26. 1 2 Mark Hermodson (2005). "Editorial and position papers". Protein Science. 14 (9): 2215–2216. doi:10.1110/ps.051654305. PMC   2253483 .
  27. Theory is as Theory Does Archived 2007-10-21 at the Wayback Machine , Ian F. Musgrave, Steve Reuland, and Reed A. Cartwright, Talk Reason
  28. Masel, Joanna (March 2006). "Cryptic Genetic Variation Is Enriched for Potential Adaptations". Genetics . 172 (3): 1985–1991. doi:10.1534/genetics.105.051649. PMC   1456269 . PMID   16387877.
  29. Afriat, Livnat; Cintia Roodveldt; Giuseppe Manco; Dan S. Tawfik (November 21, 2006). "The Latent Promiscuity of Newly Identified Microbial Lactonases Is Linked to a Recently Diverged Phosphotriesterase" (PDF). Biochemistry . 45 (46): 13677–86. doi:10.1021/bi061268r. PMID   17105187.
  30. "Kansas Evolution Hearings: Michael Behe and John Calvert" . Retrieved 2008-03-10.
  31. Kitzmiller v. Dover Area School District ,400F. Supp. 2d707, 745(M.D.PaDecember 20, 2005)., docket # 04cv2688, Ruling, page 88
  32. David W. Snoke; Jeffrey Cox; Donald Pletcher (2014). "Suboptimality and Complexity in Evolution". Complexity. 21 (1): 322–327. Bibcode:2015Cmplx..21a.322S. doi:10.1002/cplx.21566.
  33. Opderbeck, David W. (2007). "Review of 'A Biblical Case for an Old Earth'". Perspectives on Science and Christian Faith . American Scientific Affiliation.
  34. D.W. Snoke (2014). "Systems Biology as a Research Program for Intelligent Design". BIO-Complexity. 2014 (3). doi:10.5048/BIO-C.2014.3. S2CID   54870446.
  35. Greytak, Thomas (October 1995). "Review of Bose–Einstein Condensation, edited by Allan Griffin, David W. Snoke, and Sandro Stringari". Physics Today. 48 (10): 63. doi:10.1063/1.2808208.
  36. Burnett, Keith (May 2001). "Review of Bose-Einstein Condensation of Excitons and Biexcitons: and Coherent Nonlinear Optics with Excitons by Sviatoslav A. Moskalenko and David W. Snoke". 54 (5): 60. doi: 10.1063/1.1381109 .{{cite journal}}: Cite journal requires |journal= (help)