Dextroscope

Last updated

The Dextroscope is a medical equipment system that creates a virtual reality (VR) environment in which surgeons can plan neurosurgical and other surgical procedures. [1]

Contents

The Dextroscope is designed to show a patient's 3D anatomical relationships and pathology in great detail. Although its main purpose is for planning surgery, the dextroscope has also proven useful in research in cardiology, [2] [3] radiology and medical education. [4]

History

The Dextroscope started as a research project in the mid-90s at the Kent Ridge Digital Labs research institute (part of Singapore's Agency for Science, Technology and Research (A*STAR)). It was initially named the Virtual Workbench [5] and underwent commercialization in 2000 by the company Volume Interactions Pte Ltd with the name Dextroscope. The Dextroscope was selected in 2021 by A*STAR as one of the 30 innovations and inventions that pushed scientific boundaries, made an economic impact or improved lives over its 30 years history (A*STAR@30: 30 Innovations and Inventions Over Three Decades).

The Dextroscope was designed to be a practical variation of Virtual Reality which introduced an alternative to the prevalent trend of full immersion of the 1990s. Instead of immersing the whole user into a virtual reality, it just immersed the neurosurgeon into the patient data.

Description

The Dextroscope allows its user to interact intuitively with a Virtual Patient. This Virtual Patient is composed of computer-generated 3D multi-modal images obtained from any DICOM tomographic data including CT, MRI, MRA, MRV, functional MRI and CTA, PET, SPECT and Tractography. The Dextroscope can work with any multi-modality combination, supporting polygonal meshes as well. [6]

The surgeon sits at the Dextroscope 3D interaction console and manipulates the Virtual Patient using both hands, similar to real life. Using stereoscopic visualisations displayed via a mirror, the surgeon sees the Virtual Patient floating behind the mirror but within easy reach of the hands. The surgeon uses flexible 3D hand movements to rotate and manipulate the object of interest. The Dextroscope allows virtual segmentation of organs and structures, making accurate 3D measurements, etc.

The Dextroscope. Dextroscope MK10.jpg
The Dextroscope.

In one hand the surgeon holds a handle with a switch that, when pressed, allows the 3D image to be moved freely as if it were an object held in real space. The other hand holds a pencil shaped stylus that the surgeon uses to select tools from a virtual control panel and perform detailed manipulations on the 3D image.

The surgeon does not see the stylus, handle or his/her hands directly, as they are hidden behind the surface of the mirror. Instead he/she sees a virtual handle and stylus calibrated to appear in exactly the same position as the real handle and stylus. The virtual handle can serve as a drill tool, measurement tool, cutter, etc. [5]

The Dextroscope allows surgeons to interact with and manipulate the Virtual Patient, such as simulating inter-operative viewpoints or the removal of bone and soft tissue. The surgeon is able to reach inside and manipulate the image interior.

Virtual tools

The Dextroscope provides virtual tools to manipulate the 3D image. The surgeon can use them within the virtual person to extract surgically relevant structures like the cortex or a tumor , [7] extract blood vessels, [8] or to adjust the color and transparency of displayed structures to see deep inside the patient. The surgeon can simulated the removal of bone using a simulated skull drilling tool.

Typical structures that can be segmented are tumors, blood vessels, aneurysms, parts of the skull base, and organs. Segmentation is done either automatically (when the structures are demarcated clearly by their outstanding image intensity - such as the cortex) or through user interaction (using for example an outlining tool to define the extent of the structure manually).

A virtual ‘pick’ tool allows the user to pick a segmented object and uncouple it from its surroundings for closer inspection. A measurement tool provides accurate measurement of straight and curving 3D structures such as the scalp, and measure angles, such as those between vessels or bony structures (for example, when planning the insertion of a screw into the spine).

Neurosurgery planning – case studies and evaluations

The use of the Dextroscope has been reported for several neurosurgical clinical scenarios; [1] [9] [10]

Screen Capture from the Dextroscope. This image shows a moment during the planning of a typical neurosurgical procedure involving an MRI, DTI, TMS data modalities. Dextroscope Screen Capture showing the planning of a neurosurgical tumor case.jpg
Screen Capture from the Dextroscope. This image shows a moment during the planning of a typical neurosurgical procedure involving an MRI, DTI, TMS data modalities.

- cerebral arteriovenous malformations [11] [12]

- aneurysms [13] [14] [15]

- cranial nerve decompression (in cases of trigeminal neuralgia and hemifacial spasm) [16] [17] [18]

- meningiomas (convexity, falcine or parasagittal) [19] [20] [21]

- ependymomas or subependymomas [13] [22]

- craniopagus twin separation [23] [24]

- transnasal approaches [25] [26] [27]

- key-hole approaches [28] [29] [30]

- epilepsy [31]

- and a great variety of deep-brain and skull base tumors [32] [33] (pituitary adenomas, craniopharyngiomas, arachnoid cysts, colloid cysts, cavernomas [34] , [35] hemangioblastomas, chordomas, epidermoids, gliomas, [36] jugular schwannomas, aqueductal stenosis, stenosis of Monro foramen, hippocampal sclerosis). [13] [37] [38]

Brain and spine pathology, such as cervical fractures of the spine, syringomyelia, and sacral nerve root neurinomas have been evaluated. [39]

For other uses of the Dextroscope in neurosurgery refer to [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] . [52]

Other surgical specialties

The Dextroscope has been applied also outside of neurosurgery to benefit any patient presenting a surgical challenge: an anatomical or structural complexity that requires planning of the surgical (or interventional) approach, for example, ENT [53] orthopedic, trauma and cranio-facial surgery, [54] [55] [56] [57] [58] [59] cardiac surgery [60] and liver resection . [61] [62]

Dextroscope and diagnostic imaging

Dextroscope is not just for surgeons – radiologists use it, too. The rapid growth in multi-modal diagnostic imaging data routinely available has increased their workload tremendously. Using the Dextroscope, radiologists can reconstruct multimodal models from high volumes of 2D slices – hence facilitating a better understanding of the 3D anatomical structures and helping with the diagnosis.

Furthermore, the Dextroscope virtual reality environment helps bridge the gap between radiology and surgery - by allowing the radiologist to easily demonstrate to surgeons important 3D structures in a way that surgeons are familiar with.
This demonstration capability makes it also useful as a base for medical educators in which to convey 3D information to students. [63] In order to reach a larger group of people in a classroom or auditorium, a version was manufactured called Dextrobeam. [64]

The Dextroscope was installed, (among other medical and research institutions) at:

Medical/research institutionMain use
Hirslanden Hospital (Zurich, Switzerland)Neurosurgery
St Louis University Hospital (St Louis, US)Neurosurgery
Stanford University Medical Center (San Francisco, US)Neurosurgery and craniomaxillofacial surgery
Johns Hopkins Hospital (Baltimore, US)Radiology research
Rutgers New Jersey Medical School (Newark, US)Neurosurgery, ENT
Hospital of the University of Pennsylvania (Philadelphia, US)Neurosurgery and cardiovascular radiology
Weill Cornell Brain and Spine Center (New York, US)Neurosurgery
Johannes Gutenberg University Mainz (Germany)Neurosurgery and medical education
Hospital del Mar (Barcelona, Spain)Neurosurgery
Université Catholique de Louvain, Cliniques Universitaires St-Luc (Brussels, Belgium)Neurosurgery
Istituto Neurologico C. Besta (Milan, Italy)Neurosurgery
Royal London Hospital (London, UK)Neurosurgery
Faculty of Medicine, University of Barcelona (Barcelona, Spain)Neurosurgery research & neuroanatomy
Inselpital (Bern, Switzerland)ENT
School of Medicine, University of Split (Split, Croatia)Neurophysiology research
National Neuroscience Institute (Singapore)Neurosurgery
SINAPSE Institute (Singapore)Neurosurgery research
Prince of Wales Hospital (Hong Kong)Neurosurgery and orthopedics
Hua Shan Hospital (Shanghai, China)Neurosurgery
Advanced Surgery Training Centre of the National University Hospital  (Singapore)Medical education
Fujian Medical University (Fuzhou, China)Neurosurgery and maxillofacial surgery

Dextroscope in the operating room: DEX-Ray

The Dextroscope was a pre-operative planning system which created 3D patient-specific virtual models. To bring the patient data into the operating room, in particular to neurosurgery, the DEX-Ray [65] augmented reality neurosurgical navigation system was developed in 2006-2008. DEX-Ray overlaid 3D virtual patient information over a video stream obtained from a proprietary handheld tracked video probe designed by the company. This allowed image guidance by displaying co-registered planning data over the real images of the patient seen by the video camera, so that the clinician had 'see-through' visualization on the patient's head, and helped plan the craniotomy and guide during the intervention. The DEX-Ray was clinically tested at the Singapore National Neuroscience Institute (Singapore) and at the Hospital Clinic Barcelona (Spain). It was not released as a commercial product.

Commercialization

The Dextroscope and Dextrobeam were products of Volume Interactions Pte Ltd (a member of the Bracco Group), a company spun-off from the Kent Ridge Digital Labs research institute in Singapore. They received USA FDA 510(K) - class II (2002) clearance, CE Marking - class I (2002), China SFDA Registration - class II (2004) and Taiwan Registration - type P (Radiology) (2007). For a comprehensive overview of the Dextroscope refer to the Springer International Publishing book chaper. [66]

Related Research Articles

<span class="mw-page-title-main">Neurosurgery</span> Medical specialty of disorders which affect any portion of the nervous system.

Neurosurgery or neurological surgery, known in common parlance as brain surgery, is the medical specialty concerned with the surgical treatment of disorders which affect any portion of the nervous system including the brain, spinal cord and peripheral nervous system.

Image-guided surgery (IGS) is any surgical procedure where the surgeon uses tracked surgical instruments in conjunction with preoperative or intraoperative images in order to directly or indirectly guide the procedure. Image guided surgery systems use cameras, ultrasonic, electromagnetic or a combination of fields to capture and relay the patient's anatomy and the surgeon's precise movements in relation to the patient, to computer monitors in the operating room or to augmented reality headsets. This is generally performed in real-time though there may be delays of seconds or minutes depending on the modality and application.

<span class="mw-page-title-main">Currarino syndrome</span> Medical condition

Currarino syndrome is an inherited congenital disorder where either the sacrum is not formed properly, or there is a mass in the presacral space in front of the sacrum, and there are malformations of the anus or rectum. It occurs in approximately 1 in 100,000 people.

Patient registration is used to correlate the reference position of a virtual 3D dataset gathered by computer medical imaging with the reference position of the patient. This procedure is crucial in computer assisted surgery, in order to insure the reproducitibility of the preoperative registration and the clinical situation during surgery. The use of the term "patient registration" out of this context can lead to a confusion with the procedure of registering a patient into the files of a medical institution.

Computer-assisted surgery (CAS) represents a surgical concept and set of methods, that use computer technology for surgical planning, and for guiding or performing surgical interventions. CAS is also known as computer-aided surgery, computer-assisted intervention, image-guided surgery, digital surgery and surgical navigation, but these are terms that are more or less synonymous with CAS. CAS has been a leading factor in the development of robotic surgery.

<span class="mw-page-title-main">Surgical planning</span>

Surgical planning is the preoperative method of pre-visualising a surgical intervention, in order to predefine the surgical steps and furthermore the bone segment navigation in the context of computer-assisted surgery. The surgical planning is most important in neurosurgery and oral and maxillofacial surgery. The transfer of the surgical planning to the patient is generally made using a medical navigation system.

<span class="mw-page-title-main">Nicholas Theodore</span> American neurosurgeon

Nicholas Theodore is an American neurosurgeon and researcher at Johns Hopkins University School of Medicine. He is known for his work in spinal trauma, minimally invasive surgery, robotics, and personalized medicine. He is Director of the Neurosurgical Spine Program at Johns Hopkins and Co-Director of the Carnegie Center for Surgical Innovation at Johns Hopkins.

<span class="mw-page-title-main">Michael L. J. Apuzzo</span> American academic neurological surgeon

Michael L. J. Apuzzo is an American academic neurological surgeon, the Edwin M. Todd/Trent H. Wells, Jr. Professor Emeritus of Neurological Surgery and Radiation Oncology, Biology, and Physics at the Keck School of Medicine, of the University of Southern California. He is also editor emeritus of the peer-reviewed journals World Neurosurgery and Neurosurgery. He is distinguished adjunct professor of neurosurgery at the Yale School of Medicine, distinguished professor of advanced neurosurgery and neuroscience and senior advisor, at the Neurological Institute, Wexner Medical School, The Ohio State University, and adjunct professor of neurosurgery, Weill Cornell Medicine, Department of Neurological Surgery & Weill Cornell Brain and Spine Center.

Curtis Dickman is an American researcher, author, and retired Neurosurgeon. He is recognized internationally for his pioneering work in the fields of Spinal Surgery, Surgery of the Craniocervical Junction, Spinal Biomechanics, and Thoracoscopic Neurosurgery.

Endoscopic endonasal surgery is a minimally invasive technique used mainly in neurosurgery and otolaryngology. A neurosurgeon or an otolaryngologist, using an endoscope that is entered through the nose, fixes or removes brain defects or tumors in the anterior skull base. Normally an otolaryngologist performs the initial stage of surgery through the nasal cavity and sphenoid bone; a neurosurgeon performs the rest of the surgery involving drilling into any cavities containing a neural organ such as the pituitary gland. The use of endoscope was first introduced in Transsphenoidal Pituitary Surgery by R Jankowsky, J Auque, C Simon et al. in 1992 G.

<span class="mw-page-title-main">James Rutka</span> Canadian neurosurgeon

James Rutka is a Canadian neurosurgeon from Toronto, Canada. Rutka served as RS McLaughlin Professor and Chair of the Department of Surgery in the Faculty of Medicine at the University of Toronto from 2011 – 2022. He subspecializes in pediatric neurosurgery at The Hospital for Sick Children (SickKids), and is a Senior Scientist in the Research Institute at SickKids. His main clinical interests include the neurosurgical treatment of children with brain tumours and epilepsy. His research interests lie in the molecular biology of human brain tumours – specifically in the determination of the mechanisms by which brain tumours grow and invade. He is the Director of the Arthur and Sonia Labatt Brain Tumour Research Centre at SickKids, and Editor-in-Chief of the Journal of Neurosurgery.

Volume Interactions Pte Ltd was a company that pioneered in the 1990s the use Virtual Reality technology in surgery planning. The company created and marketed the Dextroscope, the first commercial surgical planning system that used virtual reality principles going beyond the mouse and keyboard. The Dextroscope introduced a variation of Virtual Reality technology that didn't use Head-Mounted display that provided a natural and comfortable interface to work with multi-modality 3D medical images for long periods of time. This environment was applied to the planning of patient-specific surgical approaches for several clinical disciplines, including neurosurgery, Ear-Nose-Throat, and liver surgery. The Dextroscope received world-wide attention by being involved in the planning of several craniopagus twin separations, most notably the Zambian twins (1997) and the German twins (2004) at Johns Hopkins Hospital led by Dr Benjamin Carson, and the Nepali twins separation at the Singapore General Hospital in 2001.

Yoko Kato is a Japanese neurosurgeon. She is professor and chair of the Department of Neurosurgery at Fujita Health University. She was the first woman in Japan to be promoted to full professor of neurosurgery.

The Dextrobeam is a highly interactive console that enables collaborative examination of three-dimensional (3-D) medical imaging data for planning, discussing, or teaching neurosurgical approaches and strategies. The console is designed to work in combination with a 3D stereoscopic display. The console enables two-handed interaction by means of two 6 Degree-of-Freedom motion tracking devices. A set of built-in software tools gives users the ability to manipulate and interact with patients’ imaging data in a natural and intuitive way.

<span class="mw-page-title-main">Antonio Bernardo</span>

Antonio Bernardo is an Italian-American neurosurgeon and academic physician. He is a professor of Neurological Surgery and the Director of the Neurosurgical Innovations and Training Center for Skull Base and Microneurosurgery in the Department of Neurological Surgery at Weill Cornell Medical College. He has gained significant notoriety for his expertise in skull base and cerebrovascular surgery, and has published extensively on minimally invasive neurosurgery. He is a pioneer in the use of 3D technology in neurosurgery and a strong advocate for competency-based training in surgery.

Jawad Youssef Fares is a Lebanese physician-scientist. He was selected for the Forbes 30 Under 30 list in science and healthcare for his contribution to solving healthcare problems in the developing world. He also featured twice in the Forbes Middle East 30 Under 30, and was selected as one of the top 10 young scientists in the world by Genetic Engineering and Biotechnology News. In 2019, Fares was elected as a Fellow of The World Academy of Medical Sciences, and in 2021 was one of the Young Physician Leaders selected by the InterAcademy Partnership.

<span class="mw-page-title-main">Rolando Del Maestro</span> Italian-born Canadian neurosurgeon

Rolando Fausto Del Maestro is an Italian-born Canadian neurosurgeon, the William Feindel Professor Emeritus in neuro-oncology and director of the Neurosurgical Simulation Research Center at the Montreal Neurological Institute and Hospital, where he has been involved in simulating real brain surgery by creating virtual setting scenarios, founded upon the principles of flight simulation.

Global neurosurgery is a field at the intersection of public health and clinical neurosurgery. It aims to expand provision of improved and equitable neurosurgical care globally.

<span class="mw-page-title-main">Claire Karekezi</span> Rwandan neurosurgeon

Claire Karekezi is a Rwandan neurosurgeon at the Rwanda Military Hospital in Kigali, Rwanda. As the first female neurosurgeon in Rwanda, and one of the eight Rwandan neurosurgeons serving a population of 14 million, Karekezi serves as an advocate for women in neurosurgery. She has become an inspiration for young people pursuing neurosurgery, particularly young women.

<span class="mw-page-title-main">Sandi Lam</span> Canadian pediatric neurosurgeon

Sandi Lam is a Canadian pediatric neurosurgeon and is known for her research in minimally invasive endoscopic hemispherectomy for patients with epilepsy. Lam is the Vice Chair for Pediatric Neurological Surgery at Northwestern University and the Division Chief of Pediatric Neurosurgery at Lurie Children's Hospital. She has spent her career advancing pediatric brain surgery capabilities globally through her work in Kenya performing surgeries as well as training and mentoring local residents and fellows.

References

  1. 1 2 Kockro, R.A.; Serra, L.; Tseng-Tsai, Y.; Chan, C.; Yih-Yian, S.; Gim-Guan, C.; Lee, E.; Hoe, L.Y.; Hern, N.; Nowinski, W.L. (2000). "Planning and simulation of neurosurgery in a virtual reality environment". Neurosurgery. 46 (1): 118–135. doi:10.1097/00006123-200001000-00024. PMID   10626943.
  2. Fu, Yingli (2010). "MRI and CT Tracking of Mesenchymal Stem Cells with Novel Perfluorinated Alginate Microcapsules". Journal of Cardiovascular Magnetic Resonance. 12: O14. doi: 10.1186/1532-429X-12-S1-O14 .
  3. Kraitchman, Dara L. (Sep 6, 2005). "Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction". Circulation. 112 (10): 1451–1461. doi:10.1161/CIRCULATIONAHA.105.537480. PMC   1456731 . PMID   16129797.
  4. Liu, Kaijun (Sep 2013). "Anatomical education and surgical simulation based on the Chinese Visible Human: a three-dimensional virtual model of the larynx region". Anatomical Science International. 88 (4): 254–8. doi:10.1007/s12565-013-0186-x. PMID   23801001. S2CID   20866832.
  5. 1 2 Poston, T.; Serra, L. (1996). "Dextrous Virtual Work". Commun. ACM. 39 (5): 37–45. doi: 10.1145/229459.229464 . S2CID   3171265.
  6. Meningeal Neoplasms: New Insights for the Healthcare Professional: 2011 Edition: ScholarlyBrief. ScholarlyEditions. 2012-01-09. ISBN   978-1-4649-0692-3.
  7. Chia, W.K.; Serra, L. (2006). "Contouring in 2D while viewing stereoscopic 3D volumes". Stud Health Technol Inform. 119: 93–95. PMID   16404022.
  8. Serra, Luis; Hern, Ng; Choon, Chua Beng; Poston, Timothy (1997). "Interactive vessel tracing in volume data". Proceedings of the 1997 symposium on Interactive 3D graphics - SI3D '97. pp. 131–ff. doi:10.1145/253284.253320. ISBN   0897918843. S2CID   376398.
  9. Matis, G.K.; Silva, D.O. de A.; Chrysou, O.I.; Karanikas, M.; Pelidou, S.-H.; Birbilis, T.A.; Bernardo, A.; Stieg, P. (2013). "Virtual reality implementation in neurosurgical practice: the"can't take my eyes off you" effect". Turk Neurosurg. 23 (5): 690–691. PMID   24101322.
  10. Ferroli, P.; Tringali, G.; Acerbi, F.; Aquino, D.; Franzini, A.; Broggi, G. (2010). "Brain surgery in a stereoscopic virtual reality environment: a single institution's experience with 100 cases". Neurosurgery. 67 (3 Suppl Operative): 79–84. doi:10.1227/01.NEU.0000383133.01993.96. PMID   20679945. S2CID   25614271.
  11. Ng, I; Hwang, PY; Kumar, D; Lee, CK; Kockro, RA; Sitoh, YY (2009). "Surgical planning for microsurgical excision of cerebral arteriovenous malformations using virtual reality technology". Acta Neurochir (Wien). 151 (5): 453–63, discussion 463. doi:10.1007/s00701-009-0278-5. PMID   19319471. S2CID   1876685.
  12. Wong, GK; Zhu, CX; Ahuja, AT; Poon, WS (2009). "Stereoscopic virtual reality simulation for microsurgical excision of cerebral arteriovenous malformation: case illustrations". Surg Neurol. 72 (1): 69–72. doi:10.1016/j.surneu.2008.01.049. PMID   19559930.
  13. 1 2 3 Stadie, AT; Kockro, RA; Reisch, R; Tropine, A; Boor, S; Stoeter, P; Perneczky, A (2008). "Virtual reality system for planning minimally invasive neurosurgery. Technical note". J Neurosurg. 108 (2): 382–394. doi:10.3171/jns/2008/108/2/0382. PMID   18240940.
  14. Wong GK, Zhu CX, Ahuja AT, Poon WS: Craniotomy and clipping of intracranial aneurysm in a stereoscopic virtual reality environment" Neurosurgery 2007; 61: 564-568
  15. Guo, Y.; Ke, Y.; Zhang, S.; Wang, Q.; Duan, C.; Jia, H.; Zhou, L.; Xu, R. (2008). "Combined application of virtual imaging techniques and three-dimensional computed tomographic angiography in diagnosing intracranial aneurysms". Chinese Medical Journal (English Edition). 121 (24): 2521–4. PMID   19187589.
  16. Du, ZY; Gao, X; Zhang, XL; Wang, ZQ; Tang, WJ (2010). "Preoperative evaluation of neurovascular relationships for microvascular decompression in the cerebellopontine angle in a virtual reality environment". J Neurosurg. 113 (3): 479–485. doi:10.3171/2009.9.jns091012. PMID   19852542.
  17. González Sánchez, JJ; Enseñat Nora, J; Candela Canto, S; Rumià Arboix, J; Caral Pons, LA; Oliver, D; Ferrer Rodriguez, E (2010). "New stereoscopic virtual reality system application to cranial nerve microvascular decompression". Acta Neurochir (Wien). 152 (2): 355–360. doi:10.1007/s00701-009-0569-x. PMID   19997945. S2CID   34128218.
  18. Liu, XD; Xu, QW; Che, XM; Yang, DL (2009). "Trigeminal neurinomas: Clinical features and surgical experience in 84 patients". Neurosurg Rev. 32 (4): 435–444. doi:10.1007/s10143-009-0210-8. PMID   19633876. S2CID   7168769.
  19. Low, D; Lee, CK; Dip, LL; Ng, WH; Ang, BT; Ng, I (2010). "Augmented reality neurosurgical planning and navigation for surgical excision of parasagittal, falcine and convexity meningiomas". Br J Neurosurg. 24 (1): 69–74. doi:10.3109/02688690903506093. PMID   20158356. S2CID   7573456.
  20. Khu, K.J.; Ng, I.; Ng, W.H. (2009). "The relationship between parasagittal and falcine meningiomas and the superficial cortical veins: a virtual reality study". Acta Neurochirurgica. 151 (11): 1459–1464. doi:10.1007/s00701-009-0379-1. PMID   19424657. S2CID   23957248.
  21. Tang, H.-L.; Sun, H.-P.; Gong, Y.; Mao, Y.; Wu, J.-S.; Zhang, X.-L.; Xie, Q.; Xie, L.-Q.; Zheng, M.-Z.; Wang, D.-J.; Zhu, H.; Tang, W.-J.; Feng, X.-Y.; Chen, X.-C.; Zhou, L.-F. (2012). "Preoperative surgical planning for intracranial meningioma resection by virtual reality". Chin. Med. J. 125 (11): 2057–2061. PMID   22884077.
  22. Anil, SM; Kato, Y; Hayakawa, M; Yoshida, K; Nagahisha, S; Kanno, T (2007). "Virtual 3-Dimensional preoperative planning with the dextroscope for excision of a 4th ventricular ependymoma". Minim Invasive Neurosurg. 50 (2): 65–70. doi:10.1055/s-2007-982508. PMID   17674290. S2CID   26512062.
  23. Goh, K.Y.C., 2004. Separation surgery for total vertical craniopagus twins. Child’s Nervous System 20, 567–575.
  24. "Separate Fates". 2004.
  25. Wang, S.-S.; Xue, L.; Jing, J.-J.; Wang, R.-M. (2012a). "Virtual reality surgical anatomy of the sphenoid sinus and adjacent structures by the transnasal approach". J Craniomaxillofac Surg. 40 (6): 494–499. doi:10.1016/j.jcms.2011.08.008. PMID   21996723.
  26. Wang, S.-S.; Li, J.-F.; Zhang, S.-M.; Jing, J.-J.; Xue, L. (2014). "A virtual reality model of the clivus and surgical simulation via transoral or transnasal route". Int J Clin Exp Med. 7 (10): 3270–3279. PMC   4238541 . PMID   25419358.
  27. Di Somma, A.; de Notaris, M.; Enseñat, J.; Alobid, I.; San Molina, J.; Berenguer, J.; Cappabianca, P.; Prats-Galino, A. (2014). "Extended Endoscopic Endonasal Approaches for Cerebral Aneurysms: Anatomical, Virtual Reality and Morphometric Study". BioMed Research International. 2014: 1–9. doi: 10.1155/2014/703792 . PMC   3915722 . PMID   24575410.
  28. Reisch, R.; Stadie, A.; Kockro, R.; Gawish, I.; Schwandt, E.; Hopf, N. (2009). "The minimally invasive supraorbital subfrontal key-hole approach for surgical treatment of temporomesial lesions of the dominant hemisphere". Minim Invasive Neurosurg. 52 (4): 163–169. doi:10.1055/s-0029-1238285. PMID   19838969. S2CID   26952104.
  29. Fischer, G.; Stadie, A.; Schwandt, E.; Gawehn, J.; Boor, S.; Marx, J.; Oertel, J. (2009). "Minimally invasive superficial temporal artery to middle cerebral artery bypass through a minicraniotomy: benefit of three-dimensional virtual reality planning using magnetic resonance angiography". Neurosurg Focus. 26 (5): E20. doi: 10.3171/2009.2.FOCUS0917 . PMID   19408999.
  30. Reisch, Robert; Stadie, Axel; Kockro, Ralf A.; Hopf, Nikolai (2013). "The Keyhole Concept in Neurosurgery". World Neurosurgery. 79 (2): S17.e9–S17.e13. doi:10.1016/j.wneu.2012.02.024. PMID   22381839.
  31. Serra, C.; Huppertz, H.-J.; Kockro, R.A.; Grunwald, T.; Bozinov, O.; Krayenbühl, N.; Bernays, R.-L. (2013). "Rapid and accurate anatomical localization of implanted subdural electrodes in a virtual reality environment". J Neurol Surg a Cent Eur Neurosurg. 74 (3): 175–182. doi:10.1055/s-0032-1333124. PMID   23512592. S2CID   19617652.
  32. Yang, D.L.; Xu, Q.W.; Che, X.M.; Wu, J.S.; Sun, B. (2009). "Clinical evaluation and follow-up outcome of presurgical plan by Dextroscope: a prospective controlled study in patients with skull base tumors". Surgical Neurology. 72 (6): 682–689. doi:10.1016/j.surneu.2009.07.040. PMID   19850330.
  33. Wang, S.-S.; Zhang, S.-M.; Jing, J.-J. (2012b). "Stereoscopic virtual reality models for planning tumor resection in the sellar region". BMC Neurol. 12: 146. doi: 10.1186/1471-2377-12-146 . PMC   3527196 . PMID   23190528.
  34. Chen, L.; Zhao, Y.; Zhou, L.; Zhu, W.; Pan, Z.; Mao, Y. (2011). "Surgical Strategies in Treating Brainstem Cavernous Malformations". Neurosurgery. 68 (3): 609–621. doi:10.1227/NEU.0b013e3182077531. PMID   21164376. S2CID   25241317.
  35. Stadie, A.; Reisch, R.; Kockro, R.; Fischer, G.; Schwandt, E.; Boor, S.; Stoeter, P. (2009). "Minimally Invasive Cerebral Cavernoma Surgery using Keyhole Approaches – Solutions for Technique-related Limitations". Minim Invasive Neurosurg. 52 (1): 9–16. doi:10.1055/s-0028-1103305. PMID   19247899. S2CID   260241485.
  36. Qiu, T.; Zhang, Y.; Wu, J.-S.; Tang, W.-J.; Zhao, Y.; Pan, Z.-G.; Mao, Y.; Zhou, L.-F. (2010). "Virtual reality presurgical planning for cerebral gliomas adjacent to motor pathways in an integrated 3-D stereoscopic visualization of structural MRI and DTI tractography". Acta Neurochir (Wien). 152 (11): 1847–1857. doi:10.1007/s00701-010-0739-x. PMID   20652607. S2CID   25293244.
  37. Kockro, RA; Stadle, A; Schwandt, E; Reisch, R; Charalampaki, C; Ng, I; Yeo, TT; Hwang, P; Serra, L; Perneczky, A (2007). "A collaborative virtual reality environment for neurosurgical planning and training". Neurosurgery. 61 (5 Suppl 2): 379–391. doi:10.1227/01.neu.0000303997.12645.26. PMID   18091253. S2CID   22068005.
  38. Yang; Xu, QW; Che, XM; Wu, JS; Sun, B (2009). "Clinical evaluation and follow-up outcome of presurgical plan by Dextroscope: a prospective controlled study in patients with skull base tumors". Surg Neurol. 72 (6): 682–689. doi:10.1016/j.surneu.2009.07.040. PMID   19850330.
  39. Stadie, AT; Kockro, RA; Reisch, R; Tropine, A; Boor, S; Stoeter, P; Perneczky, A (2008). "Virtual reality system for planning minimally invasive neurosurgery. Technical note". J Neurosurg. 108 (2): 382–394. doi:10.3171/jns/2008/108/2/0382. PMID   18240940.
  40. De Notaris, M.; Palma, K.; Serra, L.; Enseñat, J.; Alobid, I.; Poblete, J.; Gonzalez, J.B.; Solari, D.; Ferrer, E.; Prats-Galino, A. (2014). "A Three-Dimensional Computer-Based Perspective of the Skull Base". World Neurosurg. 82 (6): S41–S48. doi:10.1016/j.wneu.2014.07.024. PMID   25496634.
  41. Franzini, A.; Messina, G.; Marras, C.; Molteni, F.; Cordella, R.; Soliveri, P.; Broggi, G. (2009). "Poststroke fixed dystonia of the foot relieved by chronic stimulation of the posterior limb of the internal capsule". Journal of Neurosurgery. 111 (6): 1216–1219. doi:10.3171/2009.4.JNS08785. PMID   19499980.
  42. Gu, S.-X.; Yang, D.-L.; Cui, D.-M.; Xu, Q.-W.; Che, X.-M.; Wu, J.-S.; Li, W.-S. (2011). "Anatomical studies on the temporal bridging veins with Dextroscope and its application in tumor surgery across the middle and posterior fossa". Clin Neurol Neurosurg. 113 (10): 889–894. doi:10.1016/j.clineuro.2011.06.008. PMID   21831519. S2CID   1972048.
  43. Ha, W.; Yang, D.; Gu, S.; Xu, Q.-W.; Che, X.; Wu, J.-S.; Li, W. (2014). "Anatomical study of suboccipital vertebral arteries and surrounding bony structures using virtual reality technology". Med. Sci. Monit. 20: 802–806. doi:10.12659/MSM.890840. PMC   4031225 . PMID   24829084.
  44. Kockro, R.A. (2013). "Neurosurgery simulators--beyond the experiment". World Neurosurg. 80 (5): e101–102. doi:10.1016/j.wneu.2013.02.017. PMID   23396069.
  45. Kockro, R.A.; Hwang, P.Y.K. (2009). "Virtual temporal bone: an interactive 3-dimensional learning aid for cranial base surgery" (PDF). Neurosurgery. 64 (5 Suppl 2): 216–229. doi:10.1227/01.NEU.0000343744.46080.91. PMID   19404102. S2CID   27638020. Archived from the original (PDF) on 2018-11-04. Retrieved 2020-03-30.
  46. Lee, C.K.; Tay, L.L.; Ng, W.H.; Ng, I.; Ang, B.T. (2008). "Optimization of ventricular catheter placement via posterior approaches: a virtual reality simulation study". Surg Neurol. 70 (3): 274–277. doi:10.1016/j.surneu.2007.07.020. PMID   18262623.
  47. Robison, R.A.; Liu, C.Y.; Apuzzo, M.L.J. (2011). "Man, Mind, and Machine: The Past and Future of Virtual Reality Simulation in Neurologic Surgery". World Neurosurgery. 76 (5): 419–430. doi:10.1016/j.wneu.2011.07.008. PMID   22152571.
  48. Shen, M., Zhang, X.-L., Yang, D.-L., Wu, J.-S., 2010. Stereoscopic virtual reality presurgical planning for cerebrospinal otorrhea. Neurosciences (Riyadh) 15, 204–208.
  49. Shi, J.; Xia, J.; Wei, Y.; Wang, S.; Wu, J.; Chen, F.; Huang, G.; Chen, J. (2014). "Three-dimensional virtual reality simulation of periarticular tumors using Dextroscope reconstruction and simulated surgery: a preliminary 10-case study". Med. Sci. Monit. 20: 1043–1050. doi:10.12659/MSM.889770. PMC   4076173 . PMID   24961404.
  50. Stadie, A.T.; Kockro, R.A. (2013). "Mono-Stereo-Autostereo". Neurosurgery. 72: A63–A77. doi:10.1227/NEU.0b013e318270d310. PMID   23254814.
  51. Stadie, A.T.; Kockro, R.A.; Serra, L.; Fischer, G.; Schwandt, E.; Grunert, P.; Reisch, R. (2011). "Neurosurgical craniotomy localization using a virtual reality planning system versus intraoperative image–guided navigation". International Journal of Computer Assisted Radiology and Surgery. 6 (5): 565–572. doi:10.1007/s11548-010-0529-1. PMID   20809398. S2CID   19690737.
  52. Yang, D.-L., Che, X., Lou, M., Xu, Q.-W., Wu, J.-S., Li, W., Cui, D.-M., n.d. Application Of Dextroscope Virtual Reality System In Anatomical Research Of Inner Structures In Petrosal Bone.
  53. Caversaccio, M.; Eichenberger, A.; Häusler, R. (2003). "Virtual simulator as a training tool for endonasal surgery". Am J Rhinol. 17 (5): 283–290. doi:10.1177/194589240301700506. PMID   14599132. S2CID   41381779.
  54. Corey, C.L.; Popelka, G.R.; Barrera, J.E.; Most, S.P. (2012). "An analysis of malar fat volume in two age groups: implications for craniofacial surgery". Craniomaxillofac Trauma Reconstr. 5 (4): 231–234. doi:10.1055/s-0032-1329545. PMC   3577599 . PMID   24294406.
  55. Kwon, J.; Barrera, J.E.; Jung, T.-Y.; Most, S.P. (2009). "Measurements of orbital volume change using computed tomography in isolated orbital blowout fractures". Arch Facial Plast Surg. 11 (6): 395–398. doi: 10.1001/archfacial.2009.77 . PMID   19917900.
  56. Kwon, J.; Barrera, J.E.; Most, S.P. (2010). "Comparative Computation of Orbital Volume From Axial and Coronal CT Using Three-Dimensional Image Analysis". Ophthalmic Plastic & Reconstructive Surgery. 26 (1): 26–29. doi:10.1097/IOP.0b013e3181b80c6a. PMID   20090480. S2CID   205700954.
  57. Li, Y.; Tang, K.; Xu, X.; Yi, B. (2012). "Application of Dextroscope virtual reality in anatomical research of the mandible part of maxillary artery". Beijing da Xue Xue Bao. 44 (1): 75–79. PMID   22353905.
  58. Pau, C.Y.; Barrera, J.E.; Kwon, J.; Most, S.P. (2010). "Three-dimensional analysis of zygomatic-maxillary complex fracture patterns". Craniomaxillofac Trauma Reconstr. 3 (3): 167–176. doi:10.1055/s-0030-1263082. PMC   3052681 . PMID   22110833.
  59. Ma, Shun-Chang; Yang, Jun; Jia, Wang (June 2019). "Application of Dextroscope in a Rare Type of Angiomatous Meningioma Characterized With Coral-Like Vessels". Journal of Craniofacial Surgery. 30 (4): e335–e337. doi:10.1097/SCS.0000000000005271. ISSN   1049-2275. PMID   30946223. S2CID   92996604.
  60. Correa, C.R (2006). "Coronary Artery Findings After Left-Sided Compared With Right-Sided Radiation Treatment for Early-Stage Breast Cancer". Journal of Clinical Oncology. 25 (21): 3031–3037. doi: 10.1200/JCO.2006.08.6595 . PMID   17634481.
  61. Chen, G (2009). "The use of virtual reality for the functional simulation of hepatic tumors (case control study)". International Journal of Surgery. 8 (1): 72–78. doi: 10.1016/j.ijsu.2009.11.005 . PMID   19944191.
  62. Chen, G., Yang, S.-Z., Wu, G.-Q., Wang, Y., Fan, G.-H., Tan, L.-W., Fang, B., Zhang, S.-X., Dong, J.-H., 2009. Development and clinical application of 3D operative planning system of liver in virtual reality environments. Zhonghua Wai Ke Za Zhi (Chinese Journal of Surgery) 47, 1620–1626.
  63. Haase, J., 2010. Basic Training in Technical Skills: Introduction to Learning"Surgical Skills" in a Constructive Way, in: Lumenta, C.B., Rocco, C.D., Haase, J., Mooij, J.J.A. (Eds.), Neurosurgery, European Manual of Medicine. Springer Berlin Heidelberg, pp. 17–23.
  64. Kockro, Ralf A (2009). "A collaborative virtual reality environment for neurosurgical planning and training". Neurosurgery. 61 (5 Suppl 2): 379–391. doi:10.1227/01.neu.0000303997.12645.26. PMID   18091253. S2CID   22068005.
  65. Kockro, Ralf A.; Tsai, Yeo Tseng; Ng, Ivan; Hwang, Peter; Zhu, Chuangui; Agusanto, Kusuma; Hong, Liang Xiao; Serra, Luis (2009-10-01). "DEX-RAY". Neurosurgery. 65 (4): 795–808. doi:10.1227/01.NEU.0000349918.36700.1C. ISSN   0148-396X. PMID   19834386. S2CID   207142275.
  66. Kockro, Ralf A.; Serra, Luis (2018), Alaraj, Ali (ed.), "Patient-Specific Virtual Reality Simulation for Minimally Invasive Neurosurgery", Comprehensive Healthcare Simulation: Neurosurgery, Comprehensive Healthcare Simulation, Cham: Springer International Publishing, pp. 159–184, doi:10.1007/978-3-319-75583-0_13, ISBN   978-3-319-75583-0 , retrieved 2021-01-15