Endoscopic endonasal surgery

Last updated
Endoscopic endonasal surgery
Specialty Otolaryngology

Endoscopic endonasal surgery is a minimally invasive technique used mainly in neurosurgery and otolaryngology. A neurosurgeon or an otolaryngologist, using an endoscope that is entered through the nose, fixes or removes brain defects or tumors in the anterior skull base. Normally an otolaryngologist performs the initial stage of surgery through the nasal cavity and sphenoid bone; a neurosurgeon performs the rest of the surgery involving drilling into any cavities containing a neural organ such as the pituitary gland. The use of endoscope was first introduced in Transsphenoidal Pituitary Surgery by R Jankowsky, J Auque, C Simon et al. in 1992 G (Laryngoscope. 1992 Feb;102(2):198-202).

Contents

Introduction

History of endoscopic endonasal surgery

Antonin Jean Desomeaux, a urologist from Paris, was the first person to use the term, endoscope. [1] However, the precursor to the modern endoscope was invented in the 1800s when a physician in Frankfurt, Germany by the name of Philipp Bozzini, developed a tool to see the inner workings of the body. [2] Bozzini called his invention a Light Conductor, or Lichtleiter in German, and later wrote about his experiments on live patients with this device that consisted of an eyepiece and a container for a candle. [1] Following Bozzini's success, The University of Vienna starting using the device to test its practicality in other forms of medicine. After Bozzini's device received negative results from live human trials, it had to be discontinued. However, Maximilian Nitze and Joseph Leiter used the invention of the light bulb by Thomas Edison to make a more refined device similar to modern day endoscopes. This iteration was used for urological procedures, and eventually otolaryngologists began to use Nitze and Leiter's device for eustachian tube manipulation and removal of foreign bodies. [2] The endoscope made its way to the US when Walter Messerklinger began teaching David Kennedy at Johns Hopkins Hospital.[ citation needed ]

The transsphenoidal and intracranial approaches to pituitary tumors began in the 1800s but with little success. Gerard Guiot popularized the transphenoidal approach which later became part of the neurosurgical curriculum, however he himself discontinued the use of this technique because of inadequate sight. [1] In the late 1970s, the endoscopic endonasal approach was used by neurosurgeons to augment microsurgery which allowed them to view objects out of their line of sight. Another surgeon, Axel Perneczky, is considered to be a pioneer of the use of an endoscope in neurosurgery. Perneczky said that endoscopy, "improved appreciation of micro-anatomy not apparent with the microscope." [1]

The surgery was pioneered in Algeria by Bouyoucef Kheireddine and Faiza Lalam. [3] [4]

Endoscopic instrumentation

The endoscope consists of a glass fiber bundle for cold light illumination, a mechanical housing, and an optics component with four different views: 0 degree for straight forward, 30 degrees for forward plane, 90 degrees for lateral view, and 120 degrees for retrospective view. [5] For endoscopic endonasal surgery, rigid rod-lens endoscopes are used for better quality of vision, since these endoscopes are smaller than the normal endoscope used colonoscopies. [2] The endoscope has an eyepiece for the surgeon, but it is rarely used because it requires the surgeon to be in a fixed position. Instead, a video camera broadcasts the image to a monitor that shows the surgical field.[ citation needed ]

Areas of interest for surgical planning

Several specialties need to be involved to determine the complete surgical plan. These include: an Endocrinologist, a Neuroradiologist, an Ophthalmologist, a Neurosurgeon, and an Otolaryngologist.

Endocrinology

An endocrinologist is only involved in preparation for an endoscopic endonasal surgery, if the tumor is located on the pituitary gland. The tumor is first treated pharmacologically in two ways: controlling the levels of hormones that the pituitary gland secretes and reducing the size of the tumor. If this approach does not work, the patient is referred to surgery. The main types of pituitary adenomas are:

Neuroradiology

A neuroradiologist takes images of the defect so that the surgeon is prepared on what to expect before surgery. This includes identifying the lesion or tumor, controlling the effects of the medical therapy, defining the spatial situation of the lesions, and verifying the removal of the lesions. [5] The lesions associated with endoscopic endonasal surgery include:

Ophthalmology

Some suprasellar tumors invade the chiasmatic cistern, causing impaired vision. In these cases, an ophthalmologist maintains optic health by administering pre-surgical treatment, advising proper surgical techniques so that the optic nerve is not in danger, and managing post-surgery eye care. Common problems include:[ citation needed ]

Surgical approaches to the anterior skull base

Transnasal approach

The transnasal approach is used when the surgeon needs to access the roof of the nasal cavity, the clivus, or the odontoid. This approach is used to remove chordomas, chondrosarcoma, inflammatory lesions of the clivus, or metastasis in the cervical spine region. The anterior septum or posterior septum is removed so that the surgeon can use both sides of the nose. One side can be used for a microscope and the other side for a surgical instrument, or both sides can be used for surgical instruments. [2]

Transsphenoidal approach

This picture shows important anatomy involved in endoscopic endonasal surgery. The pituitary gland sits at the top of the picture behind the sphenoid sinus. Illu nasal cavities.jpg
This picture shows important anatomy involved in endoscopic endonasal surgery. The pituitary gland sits at the top of the picture behind the sphenoid sinus.

This approach is the most common and useful technique of endoscopic endonasal surgery and was first described in 1910 concurrently by Harvey Cushing and Oskar Hirsch. [6] [7] This procedure allows the surgeon to access the sellar space, or sella turcica. The sella is a cradle where the pituitary gland sits. Under normal circumstances, a surgeon would use this approach on a patient with a pituitary adenoma. The surgeon starts with the transnasal approach prior to using the transsphenoidal approach. This allows access to the sphenoid ostium and sphenoid sinus. The sphenoid ostium is located on the anterosuperior surface of the sphenoid sinus. The anterior wall of the sphenoid sinus and the sphenoid rostrum is then removed to allow the surgeon a panoramic view of the surgical area. [2] This procedure also requires the removal of the posterior septum to allow the use of both nostrils for tools during surgery. There are several triangles of blood vessels traversing this region, which are just very delicate areas of blood vessels that can be deadly if injured. [2] [8] A surgeon uses stereotactic imaging and a micro Doppler to visualize the surgical field.

The invention of the angled endoscope is used to go beyond the sella to the suprasellar (above the sellar) region. This is done with the addition of four approaches. First the transtuberculum and transplanum approaches are used to reach the suprasellar cistern. The lateral approach is then used to reach the medial cavernous sinus and petrous apex. Lastly, the inferior approach is used to reach the superior clivus. Endoscopic endonasal transclival approaches are often described according to which segment of the clivus is involved in the approach, with the clivus typically divided into three regions. [9] Depending on which segment of the clivus is involved in the surgical approach, different neurovascular structures are placed at risk. The upper third lies inferior to the dorsum sellae and posterior clinoid processes and superior to the petrous apex, the middle third lies at the level of the petrous segments of the internal carotid artery (ICA), and the inferior third extends from the jugular tubercle to the foramen magnum. [9] It is important that the Perneczky triangle is treated carefully. This triangle has optic nerves, cerebral arteries, the third cranial nerve, and the pituitary stalk. Damage to any of these could provide a devastating post-surgical outcome. [2] [10]

Transpterygoidal approach

The transpterygoidal approach enters through the posterior edge of the maxillary sinus ostium and posterior wall of the maxillary sinus. This involves penetrating three separate sinus cavities: the ethmoid sinus, the sphenoidal sinus, and the maxillary sinus. Surgeons use this method to reach the cavernous sinus, lateral sphenoid sinus, infra temporal fossa, pterygoid fossa, and the petrous apex. Surgery includes a uninectomy (removal of the osteomeatal complex), a medial maxillectomy (removal of maxilla), an ethmoidectomy (removal of ethmoid cells and/or ethmoid bone), a sphenoidectomy (removal of part of sphenoid), and removal of the maxillary sinus and the palatine bone. The posterior septum is also removed at the beginning to allow use of both nostrils. [2]

Transethmoidal approach

This approach makes a surgical corridor from the frontal sinus to the sphenoid sinus. This is done by the complete removal of the ethmoid bone, which allows a surgeon to expose the roof of the ethmoid, and the medial orbital wall. This procedure is often successful in the removal of small encephaloceles of the ethmoid osteomas of the ethmoid sinus wall or small olfactory groove meningiomas. However, with larger tumors or lesions, one of the other approaches listed above is required. [2]

Different approaches to specific regions

Approach to sellar region

For removal of a small tumor, it is accessed through one nostril. However, for larger tumors, access through both nostrils is required and the posterior nasal septum must be removed. Then the surgeon slides the endoscope into the nasal choana until the sphenoid ostium is found. Then the mucosa around the ostium is cauterized for microadenomas and removed completely for macroadenomas. Then the endoscope enters the ostium and meets the sphenoid rostrum where the mucosa is retracted from this structure and is removed from the sphenoid sinus to open the surgical pathway. At this point, imaging and Doppler devices are used to define the important structures. Then the floor of the sella turcica is opened with a high speed drill being careful to not pierce the dura mater. Once the dura is visible, it is cut with microscissors for precision. If the tumor is small, the tumor can be removed by an en bloc procedure, which consists of cutting the tumor into many sections for removal. If the tumor is larger, the center of the tumor is removed first, then the back, then the sides, then top of the tumor to make sure that the arachnoid membrane does not expand into the surgical view. This will happen if the top part of the tumor is taken out too early. After tumor removal, CSF leaks are tested for with fluorescent dye, and if there are no leaks, the patient is closed. [2]

Approach to suprasellar region

This technique is the same as to the sellar region. However the tuberculum sellae is drilled into instead of the sella. Then an opening is made that extends halfway down the sella to expose the dura, and the intercavernous sinuses is exposed. When the optic chiasm, optic nerve, and pituitary gland are visible, the pituitary gland and optic chasm are pushed apart to see the pituitary stalk. An ethmoidectomy is performed, [2] the dura is then cut, and the tumor is removed. These types of tumors are separated into two types:

Skull base reconstruction

When there is a tumor, injury, or some type of defect at the skull base whether the surgeon used an endoscopic or open surgical method, the problem still arises of providing separation of the cranial cavity and cavity between the sinuses and nose to prevent cerebrospinal fluid leakage through the opening referred to as a defect. [11]

For this procedure, there are two ways to start: with a free graft repair or with a vascularized flap repair. The free grafts use secondary material like cadaver flaps or titanium mesh to repair the skull base defects, which is very successful (95% without CSF leaks) with small CSF fistulas or small defects. [12] The local or regional vascularized flaps are pieces of tissue relatively close to the surgery site that have been mostly freed up but are still attached to the original tissue. These flaps are then stretched or maneuvered onto the desired location. When technology advanced and larger defects could be fixed endoscopically, more and more failures and leaks started to occur with the free graft technique. The larger defects are associated with a wider dural removal and an exposure to high flow CSF, which could be the reason for failure among the free graft. [12]

Pituitary gland surgery

This surgery is turned from a very serious surgery into a minimally invasive one through the nose with the use of the endoscope. For instance craniopharyngiomas (CRAs) are starting to be removed via this method. Dr. Paolo Cappabianca described the perfect CRA for this surgery to be a median lesion with a solid parasellar component (beside the sellar) or encasement of the main neuromuscular structures that are localized in the subchiasmatic (below the optic chiasm) and retrochiasmatic (behind the optic chiasm) regions. He also says that when these conditions are met, endoscopic endonasal surgery is a valid surgical option. [13] For a case study on large adenomas, the doctors showed that out of 50 patients, 19 had complete tumor removal, 9 had near complete removal, and 22 had partial removal. The partial removal came from the tumors extending into more dangerous areas. They concluded that endoscopic endonasal surgery was a valid option for surgery if the patients used pharmacological therapy after surgery. [14] Another study showed that with endoscopic endonasal surgery 90% of microadenomas could be removed, and that 2/3 of normal macroadenomas could be removed if they did not go into the cavernous sinus, which means fragile blood vessel triangles would have to be dealt with so only 1/3 of those patients recovered. [15] Endoscopic endonasal approach has been shown even among young patients to be superior to traditional microscopic transsphenoidal surgery. [16]

3-D approach vs 2-D approach

The newer 3-D technique is gaining ground as the ideal way to do surgery because it gives the surgeon a better understanding of the spatial configuration of what they are seeing on a computer screen. Dr. Nelson Oyesiku at Emory University helped develop the 3-D technique. In an article he helped write, he and the other authors compared the effects of the 2-D technique vs the 3-D technique on patient outcome. It showed that the 3-D endoscopy gave the surgeon more depth of field and stereoscopic vision and that the new technique did not show any significant changes in patient outcomes during or after surgery. [17]

Endoscopic techniques vs open techniques

In a case study from 2013, they compared the open vs endoscopic techniques for 162 other studies that contained 5,701 patients. [18] They only looked at four tumor types: the olfactory groove meningiomas (OGM), tuberculum sellae meningiomas (TSM), craniopharyngiomas (CRA), and clival chordomas (CHO). They looked at gross total resection and cerebrospinal fluid (CSF) leaks, neurological death, post-operative visual function, post operative diabetes insipidus, and post-operative obesity. The study showed that there was a greater chance of CSF leaks with endoscopic endonasal surgery. The visual function improved more with endoscopic surgery for TSM, CRA, and CHO patients. Diabetes insipidus occurred more in open procedure patients. The endoscopic patients showed a higher recurrence rate. In another case study on CRAs, [19] they showed similar results with the CSF leaks being more of a problem in endoscopic patients. Open procedure patients showed a higher rate of post operative seizures as well. Both of these studies still suggest that despite the CSF leaks, that the endoscopic technique is still an appropriate and suitable surgical option. Otologic surgery, which is traditionally performed via an open approach using a microscope, may also be performed endoscopically, and is called Endoscopic Ear Surgery or EES.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Neurosurgery</span> Medical specialty of disorders which affect any portion of the nervous system.

Neurosurgery or neurological surgery, known in common parlance as brain surgery, is the medical specialty concerned with the surgical treatment of disorders which affect any portion of the nervous system including the brain, spinal cord and peripheral nervous system.

<span class="mw-page-title-main">Rhinoplasty</span> Surgical procedure to enhance or reconstruct a human nose

Rhinoplasty, commonly called nose job, medically called nasal reconstruction, is a plastic surgery procedure for altering and reconstructing the nose. There are two types of plastic surgery used – reconstructive surgery that restores the form and functions of the nose and cosmetic surgery that changes the appearance of the nose. Reconstructive surgery seeks to resolve nasal injuries caused by various traumas including blunt, and penetrating trauma and trauma caused by blast injury. Reconstructive surgery can also treat birth defects, breathing problems, and failed primary rhinoplasties. Rhinoplasty may remove a bump, narrow nostril width, change the angle between the nose and the mouth, or address injuries, birth defects, or other problems that affect breathing, such as a deviated nasal septum or a sinus condition. Surgery only on the septum is called a septoplasty.

<span class="mw-page-title-main">Sphenoid bone</span> Bone of the neurocranium

The sphenoid bone is an unpaired bone of the neurocranium. It is situated in the middle of the skull towards the front, in front of the basilar part of the occipital bone. The sphenoid bone is one of the seven bones that articulate to form the orbit. Its shape somewhat resembles that of a butterfly or bat with its wings extended.

Cushing's disease is one cause of Cushing's syndrome characterised by increased secretion of adrenocorticotropic hormone (ACTH) from the anterior pituitary. This is most often as a result of a pituitary adenoma or due to excess production of hypothalamus CRH that stimulates the synthesis of cortisol by the adrenal glands. Pituitary adenomas are responsible for 80% of endogenous Cushing's syndrome, when excluding Cushing's syndrome from exogenously administered corticosteroids. The equine version of this disease is Pituitary pars intermedia dysfunction.

<span class="mw-page-title-main">Sella turcica</span> Saddle-shaped depression in the sphenoid bone of the skull

The sella turcica is a saddle-shaped depression in the body of the sphenoid bone of the human skull and of the skulls of other hominids including chimpanzees, gorillas and orangutans. It serves as a cephalometric landmark. The pituitary gland or hypophysis is located within the most inferior aspect of the sella turcica, the hypophyseal fossa.

<span class="mw-page-title-main">Pituitary adenoma</span> Human disease

Pituitary adenomas are tumors that occur in the pituitary gland. Most pituitary tumors are benign, approximately 35% are invasive and just 0.1% to 0.2% are carcinomas. Pituitary adenomas represent from 10% to 25% of all intracranial neoplasms and the estimated prevalence rate in the general population is approximately 17%.

<span class="mw-page-title-main">Craniopharyngioma</span> Medical condition

A craniopharyngioma is a rare type of brain tumor derived from pituitary gland embryonic tissue that occurs most commonly in children, but also affects adults. It may present at any age, even in the prenatal and neonatal periods, but peak incidence rates are childhood-onset at 5–14 years and adult-onset at 50–74 years. People may present with bitemporal inferior quadrantanopia leading to bitemporal hemianopsia, as the tumor may compress the optic chiasm. It has a point prevalence around two per 1,000,000. Craniopharyngiomas are distinct from Rathke's cleft tumours and intrasellar arachnoid cysts.

<span class="mw-page-title-main">Cavernous sinus</span> Sinus in the human head

The cavernous sinus within the human head is one of the dural venous sinuses creating a cavity called the lateral sellar compartment bordered by the temporal bone of the skull and the sphenoid bone, lateral to the sella turcica.

<span class="mw-page-title-main">Sphenoid sinus</span> One of the four paired paranasal sinuses

The sphenoid sinus is a paired paranasal sinus occurring within the body of the sphenoid bone. It represents one pair of the four paired paranasal sinuses. The pair of sphenoid sinuses are separated in the middle by a septum of sphenoid sinuses. Each sphenoid sinus communicates with the nasal cavity via the opening of sphenoidal sinus. The two sphenoid sinuses vary in size and shape, and are usually asymmetrical.

<span class="mw-page-title-main">Anterior clinoid process</span>

The anterior clinoid process is a posterior projection of the sphenoid bone at the junction of the medial end of either lesser wing of sphenoid bone with the body of sphenoid bone. The bilateral processes flank the sella turcica anteriorly.

Hypophysectomy is the surgical removal of the hypophysis. It is most commonly performed to treat tumors, especially craniopharyngioma tumors. Sometimes it is used to treat Cushing's syndrome due to pituitary adenoma or Simmond's disease It is also applied in neurosciences to understand the functioning of hypophysis. There are various ways a hypophysectomy can be carried out. These methods include transsphenoidal hypophysectomy, open craniotomy, and stereotactic radiosurgery.

<span class="mw-page-title-main">Body of sphenoid bone</span>

The body of the sphenoid bone, more or less cubical in shape, is hollowed out in its interior to form two large cavities, the sphenoidal sinuses, which are separated from each other by a septum.

<span class="mw-page-title-main">Functional endoscopic sinus surgery</span> Surgery to enlarge the paranasal sinus drainage pathways

Functional endoscopic sinus surgery (FESS) is a procedure that is used to treat sinusitis and other conditions that affect the sinuses. Sinusitis is an inflammation of the sinuses that can cause symptoms such as congestion, headaches, and difficulty breathing through the nose.

<span class="mw-page-title-main">Clivus (anatomy)</span> Bony part of the skull base

The clivus or Blumenbach clivus is a part of the occipital bone at the base of the skull. It is a shallow depression behind the dorsum sellae of the sphenoid bone. It slopes gradually to the anterior part of the basilar occipital bone at its junction with the sphenoid bone. It extends to the foramen magnum. It is related to the pons and the abducens nerve.

<span class="mw-page-title-main">Chiasmal syndrome</span> Set of signs and symptoms that are associated with lesions of the optic chiasm

Chiasmal syndrome is the set of signs and symptoms that are associated with lesions of the optic chiasm, manifesting as various impairments of the affected's visual field according to the location of the lesion along the optic nerve. Pituitary adenomas are the most common cause; however, chiasmal syndrome may be caused by cancer, or associated with other medical conditions such as multiple sclerosis and neurofibromatosis.

Cerebrospinal fluid rhinorrhoea refers to the drainage of cerebrospinal fluid through the nose (rhinorrhoea). It is typically caused by a basilar skull fracture, which presents complications such as infection. It may be diagnosed using brain scans, and by testing to see if discharge from the nose is cerebrospinal fluid. Treatment may be conservative, but usually involves neurosurgery.

Transsphenoidal surgery is a type of surgery in which an endoscope or surgical instruments are inserted into part of the brain by going through the nose and the sphenoid bone into the sphenoidal sinus cavity. Transsphenoidal surgery is used to remove tumors of the pituitary gland..

<span class="mw-page-title-main">Acromegaly</span> Human disease that results in excess growth of certain parts of the body

Acromegaly is a disorder that results in excess growth of certain parts of the human body. It is caused by excess growth hormone (GH) after the growth plates have closed. The initial symptom is typically enlargement of the hands and feet. There may also be an enlargement of the forehead, jaw, and nose. Other symptoms may include joint pain, thicker skin, deepening of the voice, headaches, and problems with vision. Complications of the disease may include type 2 diabetes, sleep apnea, and high blood pressure.

Gabriel Zada is Professor of Neurological Surgery at the University of Southern California. He is known for his expertise in brain tumor and pituitary tumor surgery and as an innovator in minimally invasive cranial surgery. Zada is the director of the USC Brain Tumor Center, USC Endoscopic Skull Base Surgery Program and USC Radiosurgery Center. He is also an NIH-funded principal investigator at the Zilkha Neurogenetic Institute. He specializes in endoscopic and minimally invasive neurosurgical techniques. During his career, he has published over 200 peer-reviewed articles on various neurosurgical topics, and holds numerous U.S. patents pertaining to minimally invasive neurosurgery and surgical devices.

Nasal surgery is a medical procedure designed to treat various conditions that cause nasal blockages in the upper respiratory tract, for example nasal polyps, inferior turbinate hypertrophy, and chronic rhinosinusitis. It encompasses several types of techniques, including rhinoplasty, septoplasty, sinus surgery, and turbinoplasty, each with its respective postoperative treatments. Furthermore, nasal surgery is also conducted for cosmetic purposes. While there are potential risks and complications associated, the advancement of medical instruments and enhanced surgical skills have helped mitigate them.

References

  1. 1 2 3 4 Doglietto F, Prevedello DM, Jane JA, Han J, Laws ER (2005). "Brief history of endoscopic transsphenoidal surgery--from Philipp Bozzini to the First World Congress of Endoscopic Skull Base Surgery". Neurosurg Focus. 19 (6): E3. doi: 10.3171/foc.2005.19.6.4 . PMID   16398480. S2CID   43877814.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 Anand VK (2007). Practical Endoscopic Skull Base Surgery. San Diego, CA: Plural Publishing. ISBN   978-1-59756-060-3.
  3. Kreo (2014). "Santé: Tizi-Ouzou: Lancement de la chirurgie par voie endoscopique au CHU". DKNews (in French). Retrieved 2022-04-22.
  4. Kreo (2014). "Endoscope air water channel". DKNews. Retrieved 2022-04-22.
  5. 1 2 3 4 5 6 de Divitiis E (2003). Endoscopic Endonasal Transsphenoidal Surgery. Austria: Springer-Verlag/Wien. ISBN   978-3-211-00972-7.
  6. Liu J, Cohen-Gadol A, Laws E, Cole C, Kan P, Couldwell W, Cushing H, Hirsch O (Dec 2005). "Harvey Cushing and Oskar Hirsch: early forefathers of modern transsphenoidal surgery". J Neurosurg. 103 (6): 1096–104. doi: 10.3171/jns.2005.103.6.1096 . PMID   16381201.
  7. Lanzino G, Laws ER Jr, Feiz-Erfan I, White WL (2002). "Transsphenoidal Approach to Lesions of the Sella Turcica: Historical Overview". Barrow Quarterly (3) (18 ed.). Archived from the original on 4 April 2015. Retrieved 3 December 2013.
  8. Cavallo LM, Cappabianca P, Galzio R, Iaconetta G, de Divitiis E, Tschabitscher M (2005). "Endoscopic transnasal approach to the cavernous sinus versus transcranial route: anatomic study". Neurosurgery. 56 (2 Suppl): 379–89, discussion 379–89. doi:10.1227/01.neu.0000156548.30011.d4. PMID   15794834. S2CID   264924552.
  9. 1 2 Little RE, Taylor RJ, Miller JD, Ambrose EC, Germanwala AV, Sasaki-Adams DM, Ewend MG, Zanation AM (August 2014). "Endoscopic endonasal transclival approaches: case series and outcomes for different clival regions". Journal of Neurological Surgery. Part B, Skull Base. 75 (4): 247–254. doi:10.1055/s-0034-1371522. ISSN   2193-6331. PMC   4108492 . PMID   25093148.
  10. Perneczky A, E. Knosp, Ch. Matula (1988). "Cavernous Sinus Surgery Approach Through the Lateral Wall". Acta Neurochirurgica. 92 (1–4): 76–82. doi:10.1007/BF01401976. PMID   3407478. S2CID   22891605.
  11. Snyderman CH, Kassam, Amin B., Carrau, Ricardo, Mintz, Arlan (January 2007). "Endoscopic Reconstruction of Cranial Base Defects following Endonasal Skull Base Surgery". Skull Base. 17 (1): 73–78. doi:10.1055/s-2006-959337. PMC   1852577 . PMID   17603646.
  12. 1 2 Harvey R, Parmar, P., Sacks, R., Zanation, A. M. (2012). "Endoscopic skull base reconstruction of large dural defects: a systematic review of published evidence". Laryngoscope. 122 (2): 452–459. doi:10.1002/lary.22475. PMID   22253060. S2CID   34402474.
  13. Cappabianca P, Cavallo L (February 2012). "The Evolving Role of Transsphenoidal Route in the Management of Craniopharyngiomas". World Neurosurgery. 2. 77 (2): 273–274. doi:10.1016/j.wneu.2011.08.040. PMID   22120287.
  14. Gondim J, Almerida JP, Albuquerque LAF, Gomes EF, Schops M (August 2013). "Giant Pituitary Adenomeas: Surgical outcomes of 50 cases operated by the endonasal endoscopic approach". World Neurosurgery. 82 (1–2): e281–e290. doi:10.1016/j.wneu.2013.08.028. PMID   23994073.
  15. Hofstetter C, Anand VK, Schwartz TH (2011). "Endoscopic transsphenoidal pituitary surgery". Operative Techniques in Otolaryngology-Head and Neck Surgery. 22 (3): 206–214. doi:10.1016/j.otot.2011.09.002.
  16. Dhandapani S, et a (Dec 2020). "Endonasal endoscopic versus microscopic transsphenoidal surgery in pituitary tumors among the young: A comparative study & meta-analysis". Clin Neurol Neurosurg. 200: 106411. doi: 10.1016/j.clineuro.2020.106411 . PMID   33338824.
  17. Kari E, Oyesiku NM, Dadashev V, Wise SK (February 2012). "Comparison of traditional 2-dimensional endoscopic pituitary surgery with new 3-dimensional endoscopic technology: intraoperative and early postoperative factors". Allergy and Rhinology. 2 (1): 2–8. doi:10.1002/alr.20036. PMID   22311834. S2CID   20651117.
  18. Graffeo C, Dietrich AR, Grobelny B, Zhang M, Goldberg JD, Golfinos JG, Lebowitz T, Kleinberg D, Placantonakis DG (September 2013). "A panoramic view of the skull base: systematic review of open and endoscopic endonasal approaches to four tumors". Pituitary. 17 (4): 349–356. doi:10.1007/s11102-013-0508-y. PMC   4214071 . PMID   24014055.
  19. Komotar R, Starke RM, Raper DMS, Anand VK, Schwartz TH (February 2012). "Endoscopic Endonasal Compared with Microscopic Transsphenoidal and Open Transcranial Resection of Craniopharyngiomas". World Neurosurgery. 77 (2): 329–341. doi:10.1016/j.wneu.2011.07.011. PMID   22501020.