Dielectric withstand test

Last updated

A dielectric withstand test (or pressure test, high potential or hipot test) is an electrical test performed on a component or product to determine the effectiveness of its insulation. The test may be between mutually insulated sections of a part or energized parts and electrical ground. The test is a means to qualify a device's ability to operate safely during rated electrical conditions. [1] If the current through a device under test is less than a specified limit at the required test potential and time duration, the device meets the dielectric withstand requirement. A dielectric withstand test may be done as a factory test on new equipment, or may be done on apparatus already in service as a routine maintenance test. [2]

An insulation test set; in this pattern, a hand-cranked generator provides the high voltage and the scale is directly calibrated in megohms. Meger M4100 pealt.JPG
An insulation test set; in this pattern, a hand-cranked generator provides the high voltage and the scale is directly calibrated in megohms.

Voltage withstand testing is done with a high voltage source and voltage and current meters. A single instrument called a "pressure test set" or "hipot tester" is often used to perform this test. It applies the necessary voltages to a device and monitors leakage current. The current can trip a fault indicator. The tester has output overload protection. The test voltage may be either direct current or alternating current at power frequency or other frequency, like resonant frequency (30 to 300 Hz determined by load) or VLF (0.01 Hz to 0.1 Hz), when convenient. The maximum voltage is given in the test standard for the particular product. The application rate may also be adjusted to manage leakage currents resulting from inherent capacitive effects of the test object. The duration of the test is dependent on the test requirements of the asset owner but is normally up to 5 minutes. The applied voltage, rate of application and test duration depend on the specification requirements of the equipment. Different test standards apply for consumer electronics, military electrical devices, high voltage cables, switchgear and other apparatus. [2]

Typical hipot equipment leakage current trip limit settings range between 0.1 and 20 mA [3] and are set by the user according to test object characteristics and rate of voltage application. The objective is to choose a current setting that will not cause the tester to falsely trip during voltage application, while at the same time, selecting a value that minimizes possible damage to the device under test should an inadvertent discharge or breakdown occur.

Control panel of a portable high voltage ("hipot") tester ; this instrument can test up to 100 kV DC High voltage test set.jpg
Control panel of a portable high voltage ("hipot") tester ; this instrument can test up to 100 kV DC

See also

Related Research Articles

Insulator (electricity) Material that does not conduct an electric current

An electrical insulator is a material in which the electron does not flow freely or the atom of the insulator have tightly bound electrons whose internal electric charges do not flow freely; very little electric current will flow through it under the influence of an electric field. This contrasts with other materials, semiconductors and conductors, which conduct an electric current more easily. The property that distinguishes an insulator is its resistivity; insulators have higher resistivity than semiconductors or conductors. The most common examples are non-metals.

Ground (electricity)

In electrical engineering, ground or earth is the reference point in an electrical circuit from which voltages are measured, a common return path for electric current, or a direct physical connection to the earth.

Radio frequency (RF) is the oscillation rate of an alternating electric current or voltage or of a magnetic, electric or electromagnetic field or mechanical system in the frequency range from around 20 kHz to around 300 GHz. This is roughly between the upper limit of audio frequencies and the lower limit of infrared frequencies; these are the frequencies at which energy from an oscillating current can radiate off a conductor into space as radio waves. Different sources specify different upper and lower bounds for the frequency range.

Circuit breaker Automatically operated electrical switch designed to protect an electrical circuit from damage caused by excess current from an overload or short circuit

A circuit breaker is an automatically operated electrical switch designed to protect an electrical circuit from damage caused by excess current from an overload or short circuit. Its basic function is to interrupt current flow after a fault is detected. Unlike a fuse, which operates once and then must be replaced, a circuit breaker can be reset to resume normal operation.

Electrolytic capacitor

An electrolytic capacitor is a polarized capacitor whose anode or positive plate is made of a metal that forms an insulating oxide layer through anodization. This oxide layer acts as the dielectric of the capacitor. A solid, liquid, or gel electrolyte covers the surface of this oxide layer, serving as the cathode or negative plate of the capacitor. Due to their very thin dielectric oxide layer and enlarged anode surface, electrolytic capacitors have a much higher capacitance-voltage (CV) product per unit volume than ceramic capacitors or film capacitors, and so can have large capacitance values. There are three families of electrolytic capacitor: aluminum electrolytic capacitors, tantalum electrolytic capacitors, and niobium electrolytic capacitors.

In electrical engineering, partial discharge (PD) is a localized dielectric breakdown (DB) of a small portion of a solid or fluid electrical insulation (EI) system under high voltage (HV) stress. While a corona discharge (CD) is usually revealed by a relatively steady glow or brush discharge (BD) in air, partial discharges within solid insulation system are not visible.

Breakdown voltage

The breakdown voltage of an insulator is the minimum voltage that causes a portion of an insulator to become electrically conductive.

Capacitor types

Capacitors are manufactured in many forms, styles, lengths, girths, and from many materials. They all contain at least two electrical conductors separated by an insulating layer. Capacitors are widely used as parts of electrical circuits in many common electrical devices.

Electrical treeing

In electrical engineering, treeing is an electrical pre-breakdown phenomenon in solid insulation. It is a damaging process due to partial discharges and progresses through the stressed dielectric insulation, in a path resembling the branches of a tree. Treeing of solid high-voltage cable insulation is a common breakdown mechanism and source of electrical faults in underground power cables.

Portable appliance testing

Portable appliance testing is the name of a process in the United Kingdom, the Republic of Ireland, New Zealand and Australia by which electrical appliances are routinely checked for safety. The formal term for the process is "in-service inspection & testing of electrical equipment". Testing involves a visual inspection of the equipment and any flexible cables for good condition, and also where required, verification of earthing (grounding) continuity, and a test of the soundness of insulation between the current carrying parts, and any exposed metal that may be touched. The formal limits for pass/fail of these electrical tests vary somewhat depending on the category of equipment being tested.

Electrical safety testing is essential to ensure safe operating standards for any product that uses electricity. Various governments and agencies have developed stringent requirements for electrical products that are sold world-wide. In most markets it is mandatory for a product to conform to safety standards promulgated by safety and standard agencies such as UL, VDE, CSA, BSI and so on. To conform to such standards, the product must pass safety tests such as the high voltage test, Insulation Resistance Test, Ground (Earth) Bond and Ground Continuity Test and Leakage Current Test. These tests are described in IEC 60335, IEC 61010 and many other national and international standards.

Tantalum capacitor

A tantalum electrolytic capacitor is an electrolytic capacitor, a passive component of electronic circuits. It consists of a pellet of porous tantalum metal as an anode, covered by an insulating oxide layer that forms the dielectric, surrounded by liquid or solid electrolyte as a cathode. Because of its very thin and relatively high permittivity dielectric layer, the tantalum capacitor distinguishes itself from other conventional and electrolytic capacitors in having high capacitance per volume and lower weight.

Network isolators are installed as part of a wired Ethernet system as galvanic isolators to reduce the potential for electrical injury and limit the extent of damage due to lightning strikes.

VLF cable testing is a technique for testing of medium and high voltage cables. VLF systems are advantageous in that they can be manufactured to be small and lightweight; making them useful – especially for field testing where transport and space can be issues. Because the inherent capacitance of a power cable needs to be charged when energised, system frequency voltage sources are much larger, heavier and more expensive than their lower-frequency alternatives. Traditionally DC hipot testing was used for field testing of cables, but DC testing has been shown to be ineffective for withstand testing of modern cables with polymer based insulation. DC testing has also been shown to reduce the remaining life of cables with aged polymer insulation.

Shaft voltage occurs in electric motors and generators due to leakage, induction, or capacitive coupling with the windings of the motor. It can occur in motors powered by variable-frequency drives, as often used in heating, ventilation, air conditioning and refrigeration systems. DC machines may have leakage current from the armature windings that energizes the shaft. Currents due to shaft voltage causes deterioration of motor bearings, but can be prevented with a grounding brush on the shaft, grounding of the motor frame, insulation of the bearing supports, or shielding.

Film capacitor

Film capacitors, plastic film capacitors, film dielectric capacitors, or polymer film capacitors, generically called "film caps" as well as power film capacitors, are electrical capacitors with an insulating plastic film as the dielectric, sometimes combined with paper as carrier of the electrodes.

Test equipment is a general term describing equipment used in many fields. Types of test equipment include:

Aluminum electrolytic capacitor

Aluminium capacitors are polarized electrolytic capacitors whose anode electrode (+) is made of a pure aluminum foil with an etched surface. The aluminum forms a very thin insulating layer of aluminium oxide by anodization that acts as the dielectric of the capacitor. A non-solid electrolyte covers the rough surface of the oxide layer, serving in principle as the second electrode (cathode) (-) of the capacitor. A second aluminum foil called “cathode foil” contacts the electrolyte and serves as the electrical connection to the negative terminal of the capacitor.

CEAR namely Central Electricity Authority Regulations, 2010 are regulations framed by Central Electricity Authority of India under Indian Electricity Act, 2003, to regulate measures relating to safety and electric supply in India.

References

  1. MIL-STD-202G, Method 301, Dielectric Withstanding Voltage
  2. 1 2 Paul Gill (2009), Electrical Power Equipment Maintenance and Testing, Second Edition, CRC Press, 1574446568, page 459
  3. Condor Application Note 5/00, pg. 2