Digital outcrop model

Last updated
Figure 1. An example of a digital outcrop model, Woodside Canyon, Utah, USA. Top: an overview of a DOM in a form of a coloured point cloud (A) and a textured model (B). Area marked in red enlarged showed in C and D. Bottom: A coloured point cloud (C) and a textured model (D) seen from a closer distance. TexturedModelVScoloredPoinCloud.jpg
Figure 1. An example of a digital outcrop model, Woodside Canyon, Utah, USA. Top: an overview of a DOM in a form of a coloured point cloud (A) and a textured model (B). Area marked in red enlarged showed in C and D. Bottom: A coloured point cloud (C) and a textured model (D) seen from a closer distance.

A digital outcrop model (DOM), also called a virtual outcrop model, is a digital 3D representation of the outcrop surface, mostly in a form of textured polygon mesh.

Contents

DOMs allow for interpretation and reproducible measurement [1] of different geological features, e.g. orientation of geological surfaces, width and thickness of layers. The quantity of identifiable and measurable geological features highly depends on the outcrop model resolution and accuracy. [2]

Using remote sensing techniques enables these 3D models to cover areas with difficult accessibility, e.g. several meter high cliff walls. The fact that geological interpretation can be performed on the screen, also in inaccessible areas where using conventional fieldwork methods may be unsafe, and the large quantity of data that can be collected in relatively short time are the key advantages of using DOMs. [3] Georeferencing digital outcrop models allows for integration with other spatial data, e.g. results of digital geologic mapping or GIS.

Alternatively to the photorealistic textured models 3D digital outcrop models may be represented by a point cloud coloured with the spectral (RGB) data from the corresponding images. Such surface model representation accurately describes the topography of the outcrop but due to its discrete nature is often difficult to interpret (see Figure 1.). Texturing digital polygonal outcrop models with images enhances the models with high resolution continuous data and therefore facilitates geological interpretation. [2]

Creation techniques

Creation of textured DOMs can be divided into three main steps:

In order to achieve the required model resolution and accuracy data are mostly collected from the ground [2] (terrestrial) or from a helicopter platform (mobile mapping). [4] Airborne and satellite data may also be integrated but mostly as complementary datasets for the outcrop areas where close-range data are missing. [5]

Digital outcrop surface model

Creation of the digital outcrop surface model consists of the following steps:

  1. Data acquisition
Digital data needed to create an outcrop surface model may be obtained, as in the case of digital elevation models, from laser scanning or reconstructed from multiple images taken from multiple views using structure from motion or stereo vision techniques. [6] [7] An incomplete list of software packages allowing for image based modelling can be found here.
Models produced with the above mentioned methods may result in comparable scale and level of detail. [6] Regardless of the method applied, the primary resulting data are similar: 3D (X,Y,Z) coordinates of large number of points, in a form of a point cloud, describing the outcrop surface.
2. Merging point clouds and georeferencing
Point clouds obtained from different perspectives need to be merged and registered into a single coordinate system (together with the images). In the registration process a 3D transformation is computed between common parts of two point clouds. The 3D transformation parameters can be found on the basis of the corresponding points in the two point clouds, surface matching, and in the case of mobile mapping supported by GNSS and INS, by using the direct sensor orientation method [8]
In the point cloud georeferencing process a 3D transformation is computed between the local project coordinate system and a geodetic coordinate system. In order to complete that action minimum three points are required, that can be located in the point cloud and their coordinates in the geodetic system are known (measured using surveying methods or GNSS).
3. Point cloud cleaning and decimation
Regardless of the methodology of the data acquisition, the resulting point cloud is usually filtered and cleaned from unwanted objects, e.g. vegetation. Decrease of the overall point cloud density might be required depending on the outcrop surface complexity and size of the dataset.
4. 3D triangulation and triangle mesh optimization
In order to enable the possibility of model texturing, the edited point cloud is transformed into a triangulated irregular network (triangle mesh). Correct 3D data triangulation is a non-trivial task due to potential scan shadows, vegetation, sharp topography changes and random errors. Therefore additional mesh editing and optimization is often required to improve equiangularity, solve topology problems or reorient inverted surface normals.

Digital images

  1. Image registration
Creation of the textured 3D models requires definition of the relationship between all the triangle mesh vertices and the corresponding image points. Collinearity condition can be used in order to find that relationship, but image interior and exterior orientation parameters need to be known.
Interior (intrinsic) camera orientation parameters are derived from the camera calibration process.
When laser scanning is used during the data collection, the camera is mostly coupled rigidly with the scanner and its orientation relative to the scanner is precisely measured. In such cases exterior (extrinsic) orientation parameters can be easily retrieved for all the images using 3D transformation. Otherwise it is possible to establish exterior camera orientation parameters on the basis of known coordinates of minimum three points on the 3D outcrop surface model and the image.
In the case of a 3D outcrop surface model derived from photo modelling, the interior and exterior image orientation parameters may be computed by the modelling software.
2. Image pre-selection and colour balancing
Depending on the applied rendering approach (see next section) a pre-selection of images most relevant for texture mapping might be needed.
If the images used in the final texturing process were acquired under different illumination conditions and colours of corresponding features visible in different images differ significantly, image colour adjustment may be required.

Texture mapping

Different texture mapping algorithms exist, e.g.: single image texturing, [9] texture colour blending [10] or view-dependent texturing. [11] The single image texturing approach is often used, [3] [12] due to its simplicity and efficiency.

Visualization

Visualization of large textured 3D models is still somewhat problematic and highly dependent on the hardware. The 3D nature of DOMs (multiple values for each X,Y position) results in a form of data that is not suitable for inputting to most geographical information systems. However several off-the-shelf visualization software packages exist that also allow for geological interpretation and measurements:

Digital outcrop models vs. photo panels

A photo panel is a mosaic of several images, commonly used in geology for outcrop documentation and reference to geometric object properties. Scale of such photo panels is approximately established to assess size of different geological features. However, these measures normally contain errors associated with the distortion produced during the transformation of 3D outcrops into 2D image plane and with the imprecision of the manual image stitching process.[ citation needed ]

Due to their 3D nature digital outcrop models provide correct and accurate measures of the features listed in the next section.

Data extractable from digital outcrop models

Figure 2. An example of geological interpretations of a digital outcrop model near Green River, Utah, USA. Dimensions of the shown outcrop part: height ~350 m, length ~1.1 km. GeologicalInterpretationDOM.jpg
Figure 2. An example of geological interpretations of a digital outcrop model near Green River, Utah, USA. Dimensions of the shown outcrop part: height ~350 m, length ~1.1 km.

Complementary data

Analysis of the digital outcrop models may be enhanced with wide variety of georeferenced digital data, e.g.:

Using not georeferenced data with DOMs is possible but requires more work to position the auxiliary data relative to the DOM.

Applications

See also

Related Research Articles

<span class="mw-page-title-main">Lidar</span> Method of spatial measurement using laser

Lidar is a method for determining ranges by targeting an object or a surface with a laser and measuring the time for the reflected light to return to the receiver. Lidar may operate in a fixed direction or it may scan multiple directions, in which case it is known as lidar scanning or 3D laser scanning, a special combination of 3-D scanning and laser scanning. Lidar has terrestrial, airborne, and mobile applications.

<span class="mw-page-title-main">Digital elevation model</span> 3D computer-generated imagery and measurements of terrain

A digital elevation model (DEM) or digital surface model (DSM) is a 3D computer graphics representation of elevation data to represent terrain or overlaying objects, commonly of a planet, moon, or asteroid. A "global DEM" refers to a discrete global grid. DEMs are used often in geographic information systems (GIS), and are the most common basis for digitally produced relief maps. A digital terrain model (DTM) represents specifically the ground surface while DEM and DSM may represent tree top canopy or building roofs.

<span class="mw-page-title-main">Texture mapping</span> Method of defining surface detail on a computer-generated graphic or 3D model

Texture mapping is a method for mapping a texture on a computer-generated graphic. Texture here can be high frequency detail, surface texture, or color.

<span class="mw-page-title-main">Point cloud</span> Set of data points in three-dimensional space

A point cloud is a discrete set of data points in space. The points may represent a 3D shape or object. Each point position has its set of Cartesian coordinates. Point clouds are generally produced by 3D scanners or by photogrammetry software, which measure many points on the external surfaces of objects around them. As the output of 3D scanning processes, point clouds are used for many purposes, including to create 3D computer-aided design (CAD) models for manufactured parts, for metrology and quality inspection, and for a multitude of visualizing, animating, rendering, and mass customization applications.

<span class="mw-page-title-main">Photogrammetry</span> Taking measurements using photography

Photogrammetry is the science and technology of obtaining reliable information about physical objects and the environment through the process of recording, measuring and interpreting photographic images and patterns of electromagnetic radiant imagery and other phenomena.

<span class="mw-page-title-main">3D scanning</span> Scanning of an object or environment to collect data on its shape

3D scanning is the process of analyzing a real-world object or environment to collect three dimensional data of its shape and possibly its appearance. The collected data can then be used to construct digital 3D models.

Structure from motion (SfM) is a photogrammetric range imaging technique for estimating three-dimensional structures from two-dimensional image sequences that may be coupled with local motion signals. It is studied in the fields of computer vision and visual perception.

<span class="mw-page-title-main">3D reconstruction</span> Process of capturing the shape and appearance of real objects

In computer vision and computer graphics, 3D reconstruction is the process of capturing the shape and appearance of real objects. This process can be accomplished either by active or passive methods. If the model is allowed to change its shape in time, this is referred to as non-rigid or spatio-temporal reconstruction.

A structured-light 3D scanner is a 3D scanning device for measuring the three-dimensional shape of an object using projected light patterns and a camera system.

<span class="mw-page-title-main">3D city model</span>

A 3D city model is digital model of urban areas that represent terrain surfaces, sites, buildings, vegetation, infrastructure and landscape elements in three-dimensional scale as well as related objects belonging to urban areas. Their components are described and represented by corresponding two- and three-dimensional spatial data and geo-referenced data. 3D city models support presentation, exploration, analysis, and management tasks in a large number of different application domains. In particular, 3D city models allow "for visually integrating heterogeneous geoinformation within a single framework and, therefore, create and manage complex urban information spaces."

IMAGINE Photogrammetry is a software application for performing photogrammetric operations on imagery and extracting information from imagery. IMAGINE Photogrammetry is significant because it is a leading commercial photogrammetry application that is used by numerous national mapping agencies, regional mapping authorities, various DOTs, as well as commercial mapping firms. Aside from commercial and government applications, IMAGINE Photogrammetry is widely used in academic research. Research areas include landslide monitoring, cultural heritage studies, and more.

For sheet metal forming analysis within the metal forming process, a successful technique requires a non-contact optical 3D deformation measuring system. The system analyzes, calculates and documents deformations of sheet metal parts, for example. It provides the 3D coordinates of the component's surface as well as the distribution of major and minor strain on the surface and the material thickness reduction. In the Forming Limit Diagram, the measured deformations are compared to the material characteristics. The system supports optimization processes in sheet metal forming by means of;

<span class="mw-page-title-main">3D modeling</span> Form of computer-aided engineering

In 3D computer graphics, 3D modeling is the process of developing a mathematical coordinate-based representation of a surface of an object in three dimensions via specialized software by manipulating edges, vertices, and polygons in a simulated 3D space.

Prof. em. Dr. Armin Gruen is, since 1984, professor and head of the Chair of photogrammetry at the Institute of Geodesy and Photogrammetry (IGP), Federal Institute of Technology (ETH) Zurich, Switzerland. Since 1 August 2009, he is retired and is now with the Chair of Information Architecture, ETH Zurich Faculty of Architecture. He is currently acting as a principal investigator on the Simulation Platform of the SEC-FCL in Singapore.

<span class="mw-page-title-main">Mobile mapping</span>

Mobile mapping is the process of collecting geospatial data from a mobile vehicle, typically fitted with a range of GNSS, photographic, radar, laser, LiDAR or any number of remote sensing systems. Such systems are composed of an integrated array of time synchronised navigation sensors and imaging sensors mounted on a mobile platform. The primary output from such systems include GIS data, digital maps, and georeferenced images and video.

<span class="mw-page-title-main">CloudCompare</span>

CloudCompare is a 3D point cloud processing software. It can also handle triangular meshes and calibrated images.

metigo is a software application that performs image-based modelling and close range photogrammetry. It produces rectified imagery plans, true ortho-projections on planar, cylindric and conic surfaces, 3D photorealistic models, measurements from photography and mappings on a photographic base for uses in the cultural heritage sector, mainly conservation.

This is a glossary of terms relating to computer graphics.

RealityCapture (RC) is photogrammetry software for creating 3D models out of unordered photographs or laser scans without seams. The most common fields of its current use are cultural heritage, full body scanning, gaming, surveying, mapping, visual effects (VFX) and virtual reality (VR) in general.

Geological structure measurement by LiDAR technology is a remote sensing method applied in structural geology. It enables monitoring and characterisation of rock bodies. This method's typical use is to acquire high resolution structural and deformational data for identifying geological hazards risk, such as assessing rockfall risks or studying pre-earthquake deformation signs.

References

  1. 1 2 J.A. Bellian, C. Kerans and D.C. Jennette, 2005. Digital Outcrop Models: Applications of Terrestrial Scanning Lidar Technology in Stratigraphic Modeling, Journal of Sedimentary Research, vol. 75, issue 2, pp. 166-176
  2. 1 2 3 4 Buckley, S.; Howell, J.; Enge, H.; Kurz, T. (2008). "Terrestrial laser scanning in geology: data acquisition, processing and accuracy considerations". Journal of the Geological Society. 165 (3): 625–638. doi:10.1144/0016-76492007-100. hdl: 1956/4302 . S2CID   129757527.
  3. 1 2 Buckley, S.; Enge, H.; Carlsson, C.; Howell, J. (2010). "Terrestrial Laser Scanning for use in Virtual Outcrop Geology". The Photogrammetric Record. 25 (131): 225–239. CiteSeerX   10.1.1.471.9674 . doi:10.1111/j.1477-9730.2010.00585.x. S2CID   140647568.
  4. S. Buckley, J. Vallet, A. Braathen, W. Wheeler, 2008. Oblique helicopter-based laser scanning for digital terrain modelling and visualisation of geological outcrops. IAPRS 37(B4), pp.493-498 pdf.
  5. Buckley, S.; Schwarz, E.; Terlaky, V.; Howell, J.; Arnott, R.W. (2010). "Combining aerial photogrammetry and terrestrial lidar for reservoir analog modeling". Photogrammetric Engineering & Remote Sensing. 76 (8): 953–963. doi:10.14358/pers.76.8.953. hdl: 11336/72973 .
  6. 1 2 Haneberg, W. C. (2008). "Using close range terrestrial digital photogrammetry for 3-D rock slope modeling and discontinuity mapping in the United States". Bulletin of Engineering Geology and the Environment. 67 (4): 457–469. doi:10.1007/s10064-008-0157-y. S2CID   110488345.
  7. F. Tonon and J. T. Kottenstette, 2006. Laser and photogrammetric methods for rock face characterization. Report on a workshop held June 17–18, 2006 in Golden, Colorado. pdf.
  8. M. Cramer, D. Stallmann, N. Haala, 2000. Direct Georeferencing Using Gps/inertial Exterior Orientations For Photogrammetric Applications. IAPRS, 33(Part B3), pdf
  9. W. Niem and H. Broszio, 1995. Mapping texture from multiple camera views onto 3D-object models for computer animation. Proceedings of the International Workshop on Stereoscopic and Three Dimensional Imaging, Santorini, Greece.
  10. P. Poulin, M. Ouimet, M.C. Frasson, 1998. Interactively modelling with photogrammetry. Eurographics Workshop on Rendering, Springer-Verlag, pp. 93-104.
  11. P.E. Debevec, C.J. Taylor, J. Malik, 1996. Modeling and rendering architecture from photographs. Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, SIGGRAPH '96, New Orleans, USA.
  12. Riegl, 2010. RiSCAN PRO User manual. pp.119-120.
  13. C. Olariu, 2000. Study of cretaceous delta front deposites, integrating outcrop, GPR and 3-D photorealistic data, Panther Tongue sandstone, Utah. MSc thesis, The University of Texas at Dallas pdf
  14. Kurz, T.; Buckley, S.; Howell, J.; Schneider, D. (2011). "Integration of panoramic hyperspectral imaging with terrestrial lidar". Photogrammetric Record. 26 (134): 212–228. doi:10.1111/j.1477-9730.2011.00632.x. S2CID   140655967.
  15. Enge, H. D.; Buckley, S. J.; Rotevatn, A.; Howell, J. A. (2007). "From outcrop to reservoir simulation model: Workflow and procedures". Geosphere. 3 (6): 469–490. doi: 10.1130/ges00099.1 .