Direct-coupled amplifier

Last updated

A direct-coupled amplifier [1] or DC amplifier is a type of amplifier in which the output of one stage of the amplifier is coupled to the input of the next stage in such a way as to permit signals with zero frequency, also referred to as direct current, to pass from input to output. This is an application of the more general direct coupling. It was invented by Harold J Paz and Francis P. Keiper Jr. in 1955. It displaced the triode vacuum tube amplifier designed by Lee de Forest. Almost all vacuum tube circuit designs are now replaced with direct coupled transistor circuit design. It is the first transistor amplifier design that did not include coupling capacitors. The direct-coupled amplifier allowed analog circuits to be built smaller with the elimination of coupling capacitors and removed the lower frequency limitation that is dependent on capacitors.

Contents

History

Paz first started his career at Bell Labs as an intern from December 1950 to April 1952 as an Engineering Aid. Paz worked on testing several transistor parameters, such as rise time, RC timing constant, alpha coefficient, to determine their effects on a transistor circuit design. He then went on to work at RCA as a summer student engineering intern from June 1953 to September 1953. Paz was assigned to determine the effects of several variables on a transistor's noise factor at various radio frequencies. It was the result of this research that Paz designed the first transistor-based wireless microphone, called Phantom. RCA took interest in Paz's design and made their subsidiary National Broadcasting Company aware of the new microphone. RCA decided to file patent US2,810,110 for the microphone on July 16, 1954 and was granted on October 15, 1957. The design was used for the ND-433 wireless microphone that NBC used in 1955.

It was In June 1954, that Paz took an engineering position at Philco and was assigned to the Transistor Product Engineering Group to study the theory of operation of the direct-coupled switching circuits of R. Brown. The switching circuited used one resistor per transistor, which was revolutionary at the time for its low component count. Transistors were primarily used to be an on-off digital device that would be beneficial for making a solid-state digital computer. It was after understanding the theory of the switching circuits that Paz invented the direct-coupled "Triplet", which is a three-stage linear amplifier which uses only one resistor per transistor amplification stage. It was during this time that Paz was introduced to Robert Noyce, who was also in the Transistor Research Department. The direct-coupled amplifier was influential in the development of Fairchild's uA709 operational amplifier by Bob Widlar, which Noyce knew about as he was one of the founders of Fairchild Semiconductors.

The direct-coupled amplifier is also the basis for Philco's Mark I hearing aid, which used the circuit built with silicon alloy transistors. The hearing aid was listed as Figure 5 as an application of the Triplet on the US3030586 patent [1]


Afterwards, Paz returned to work at RCA in August 1955. He worked on designing a power supply that used small transistors which could regulate and control a large amount of power. This research resulted in new circuitry that Paz designed and was featured in RCA's internal academic journal, the Industry Service Laboratory. [2] Paz later on published his design with the International Radio Engineers and presented his findings at the IRE convention in 1957.

Paz continued working on various transistor amplifier designs for RCA, including a transistor circuit design that could be used in the rack mounted amplifier product line. This transistor circuit became a transistor preamplifier equalizer for professional turntables. Paz submitted his paper at the 1957 Annual Audio Engineering Convention. [3] Additional products include the "hybrid" transistor power amplifier, which was the first 10 watt amplifier which had less than 0.333% distortion from 30 cycles to 15,000 cycles. It was also compatible to be used with any RCA 2N301 power transistors. The low distortion transistor power amplifier was published in the Electronics Industries magazine and Paz presented his findings at the National Convention of IRE in 1959.

Current

The common use of the term "DC amplifier" does not mean "direct current amplifier", as this type can be used for both direct current and alternating current signals. The frequency response of the direct coupled amplifier is similar to low pass filter and hence it is also known as "Low-Pass Amplifier". The amplification of DC (zero frequency) is possible only by this amplifier, hence it later becomes the building block for differential amplifier and operational amplifier. Furthermore, monolithic integrated circuit technology does not allow the fabrication of large coupling capacitors.

Drift

Direct-coupled amplifiers constructed in the conventional form of single-ended amplifiers connected in cascade suffer from drift of the output voltage with time and temperature. In many high-gain applications it is necessary to provide offset adjustments to deal with drift. The drift problem can be overcome by using differential amplifiers. [4]

Application

Direct-coupled amplifiers are used in voltage regulators, servo drives and other instrumentation amplifiers. It also forms a building block for differential amplifiers and operational amplifiers.


See also

Related Research Articles

<span class="mw-page-title-main">Amplifier</span> Electronic device/component that increases the strength of a signal

An amplifier, electronic amplifier or (informally) amp is an electronic device that can increase the magnitude of a signal. It is a two-port electronic circuit that uses electric power from a power supply to increase the amplitude of a signal applied to its input terminals, producing a proportionally greater amplitude signal at its output. The amount of amplification provided by an amplifier is measured by its gain: the ratio of output voltage, current, or power to input. An amplifier is defined as a circuit that has a power gain greater than one.

<span class="mw-page-title-main">Operational amplifier</span> High-gain voltage amplifier with a differential input

An operational amplifier is a DC-coupled high-gain electronic voltage amplifier with a differential input and, usually, a single-ended output. In this configuration, an op amp produces an output potential that is typically 100,000 times larger than the potential difference between its input terminals. The operational amplifier traces its origin and name to analog computers, where they were used to perform mathematical operations in linear, non-linear, and frequency-dependent circuits.

<span class="mw-page-title-main">Capacitive coupling</span> Transfer of energy between circuits

Capacitive coupling is the transfer of energy within an electrical network or between distant networks by means of displacement current between circuit(s) nodes, induced by the electric field. This coupling can have an intentional or accidental effect.

<span class="mw-page-title-main">Emitter-coupled logic</span>

In electronics, emitter-coupled logic (ECL) is a high-speed integrated circuit bipolar transistor logic family. ECL uses an overdriven bipolar junction transistor (BJT) differential amplifier with single-ended input and limited emitter current to avoid the saturated region of operation and its slow turn-off behavior. As the current is steered between two legs of an emitter-coupled pair, ECL is sometimes called current-steering logic (CSL), current-mode logic (CML) or current-switch emitter-follower (CSEF) logic.

<span class="mw-page-title-main">Valve amplifier</span> Type of electronic amplifier

A valve amplifier or tube amplifier is a type of electronic amplifier that uses vacuum tubes to increase the amplitude or power of a signal. Low to medium power valve amplifiers for frequencies below the microwaves were largely replaced by solid state amplifiers in the 1960s and 1970s. Valve amplifiers can be used for applications such as guitar amplifiers, satellite transponders such as DirecTV and GPS, high quality stereo amplifiers, military applications and very high power radio and UHF television transmitters.

The Hartley oscillator is an electronic oscillator circuit in which the oscillation frequency is determined by a tuned circuit consisting of capacitors and inductors, that is, an LC oscillator. The circuit was invented in 1915 by American engineer Ralph Hartley. The distinguishing feature of the Hartley oscillator is that the tuned circuit consists of a single capacitor in parallel with two inductors in series, and the feedback signal needed for oscillation is taken from the center connection of the two inductors.

<span class="mw-page-title-main">Center tap</span> Contact made to a point halfway along a winding of a transformer or inductor

In electronics, a center tap (CT) is a contact made to a point halfway along a winding of a transformer or inductor, or along the element of a resistor or a potentiometer.

The Williamson amplifier is a four-stage, push-pull, Class A triode-output valve audio power amplifier designed by D. T. N. Williamson during World War II. The original circuit, published in 1947 and addressed to the worldwide do it yourself community, set the standard of high fidelity sound reproduction and served as a benchmark or reference amplifier design throughout the 1950s. The original circuit was copied by hundreds of thousands amateurs worldwide. It was an absolute favourite on the DIY scene of the 1950s, and in the beginning of the decade also dominated British and North American markets for factory-assembled amplifiers.

An integrator in measurement and control applications is an element whose output signal is the time integral of its input signal. It accumulates the input quantity over a defined time to produce a representative output.

<span class="mw-page-title-main">Electronic component</span> Discrete device in an electronic system

An electronic component is any basic discrete electronic device or physical entity part of an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not to be confused with electrical elements, which are conceptual abstractions representing idealized electronic components and elements. A datasheet for an electronic component is a technical document that provides detailed information about the component's specifications, characteristics, and performance.

This article illustrates some typical operational amplifier applications. A non-ideal operational amplifier's equivalent circuit has a finite input impedance, a non-zero output impedance, and a finite gain. A real op-amp has a number of non-ideal features as shown in the diagram, but here a simplified schematic notation is used, many details such as device selection and power supply connections are not shown. Operational amplifiers are optimised for use with negative feedback, and this article discusses only negative-feedback applications. When positive feedback is required, a comparator is usually more appropriate. See Comparator applications for further information.

<span class="mw-page-title-main">Regency TR-1</span> 1954 commercial transistor radio

The Regency TR-1 was the first commercially manufactured transistor radio, introduced in 1954. Despite mediocre performance, about 150,000 units were sold, due to the novelty of its small size and portability. Previously, transistors had only been used in military or industrial applications, and the TR-1 demonstrated their utility for consumer electronics, offering a prescient glimpse of a future full of small, convenient hand-held devices that would develop into calculators, mobile phones, tablets and the like. Surviving specimens are sought out by collectors.

In electronics, direct coupling or DC coupling is the transfer of electrical energy by means of physical contact via a conductive medium, in contrast to inductive coupling and capacitive coupling. It is a way of interconnecting two circuits such that, in addition to transferring the AC signal, the first circuit also provides DC bias to the second. Thus, DC blocking capacitors are not used or needed to interconnect the circuits. Conductive coupling passes the full spectrum of frequencies including direct current.

<span class="mw-page-title-main">Multistage amplifier</span> Amplifier consisting of two or more simple amplifiers connected in series

A multistage amplifier is an electronic amplifier consisting of two or more single-stage amplifiers connected together. In this context, a single stage is an amplifier containing only a single transistor or other active device. The most common reason for using multiple stages is to increase the gain of the amplifier in applications where the input signal is very small, for instance in radio receivers. In these applications a single stage has insufficient gain by itself. In some designs it is possible to obtain more desirable values of other parameters such as input resistance and output resistance.

<span class="mw-page-title-main">Biasing</span> Predetermined voltages or currents establishing proper operating conditions in electronic components

In electronics, biasing is the setting of DC operating conditions of an electronic component that processes time-varying signals. Many electronic devices, such as diodes, transistors and vacuum tubes, whose function is processing time-varying (AC) signals, also require a steady (DC) current or voltage at their terminals to operate correctly. This current or voltage is called bias. The AC signal applied to them is superposed on this DC bias current or voltage.

Technical specifications and detailed information on the valve audio amplifier, including its development history.

Parasitic oscillation is an undesirable electronic oscillation in an electronic or digital device. It is often caused by feedback in an amplifying device. The problem occurs notably in RF, audio, and other electronic amplifiers as well as in digital signal processing. It is one of the fundamental issues addressed by control theory.

<span class="mw-page-title-main">Decoupling (electronics)</span> Prevention of undesired energy transfer between electrical subsystems

In electronics, decoupling is the prevention of undesired electrical energy transfer (coupling) between subsystems.

<span class="mw-page-title-main">Double-tuned amplifier</span>

A double-tuned amplifier is a tuned amplifier with transformer coupling between the amplifier stages in which the inductances of both the primary and secondary windings are tuned separately with a capacitor across each. The scheme results in a wider bandwidth and steeper skirts than a single tuned circuit would achieve.

<span class="mw-page-title-main">Diamond buffer</span>

The diamond buffer or diamond follower is a four-transistor, two-stage, push-pull, translinear emitter follower, or less commonly source follower, in which the input transistors are folded, or placed upside-down with respect to the output transistors. Like any unity buffer, the diamond buffer does not alter the phase and magnitude of input voltage signal; its primary purpose is to interface a high-impedance voltage source with a low-impedance, high-current load. Unlike the more common compound emitter follower, where each input transistor drives the output transistor of the same polarity, each input transistor of a diamond buffer drives the output transistor of the opposite polarity. When the transistors operate in close thermal contact, the input transistors stabilize the idle current of the output pair, eliminating the need for a bias spreader.

References

  1. 1 2 US3030586A,Paz, Harold J.&Keiper, Jr Francis P.,"Transistor circuit",issued 1962-04-17
  2. Paz, Harold (1961). "RCA Technical Papers Index" (PDF). Radio Corporation of America. IV via World Radio History.
  3. "Complete Journal: Volume 5 Issue 4". Journal of the Audio Engineering Society. 5 (4). 1957-10-01.
  4. Balbir Kumar, Shail B. Jain, Electronic Devices and Circuits, pp. 431–432, PHI Learning, 2007 ISBN   8120329813.