Discovery and development of bisphosphonates

Last updated
Chemical structure of bisphosphonates Bisphosphonate basic structure.png
Chemical structure of bisphosphonates

Bisphosphonates are an important class of drugs originally commercialised in the mid to late 20th century. They are used for the treatment of osteoporosis and other bone disorders that cause bone fragility and diseases where bone resorption is excessive. Osteoporosis is common in post-menopausal women and patients in corticosteroid treatment where biphosphonates have been proven a valuable treatment and also used successfully against Paget's disease, myeloma, bone metastases and hypercalcemia. Bisphosphonates reduce breakdown of bones by inhibiting osteoclasts, they have a long history of use and today there are a few different types of bisphosphonate drugs on the market around the world.

Contents

Discovery

Bisphosphonates were originally synthesized in the 19th century and used in industry for their antiscaling and anticorrosive properties. In the late 1960s their potential to treat diseases related to the metabolism of the bones became evident. The first generation of bisphosphonates included etidronic acid and clodronic acid which were introduced in the 1970s and 1980s. They were the first bisphosphonate drugs to be used successfully in the clinic. [1] They have since then been developed further with the intention to make them more potent, enhance their distribution inside the bone and extend the duration of action. This has made it possible to give zoledronate, the most recent bisphosphonate drug to be placed on the market, in a single annual dose by intravenous infusion. [2]

Development

The original bisphosphonates (first generation) were simple molecules with small groups of single atoms or alkyl chains in position R1 and R2. They only had a rather weak inhibiting effect on bone resorption. The inclusion of an amino group marked the beginning of the second generation of bisphosphonates with higher potency. The first was pamidronate and similar analogues followed where the position of the nitrogen in the side chain was the key to a more potent drug. Later it became apparent that the nitrogen does not necessarily have to be connected to an alkyl chain but instead using a heterocyclic group. A few such drugs have been developed and placed on the market where zoledronate is the most notable one. Minodronic acid is even more potent and has been placed on the market in Japan. Their potency is such that it is effective even in picomolar concentration. [3]

Further development has not resulted in the placing on the market of compounds in equal potency. Arylalkyl substitutes of pamidronate are among the most recent bisphosphonates to be used clinically where the hydroxyl group in position R2 has been omitted to ensure stability. [1]

Recent research in this area has opened up an opportunity to develop new bisphosphonate drug therapies.

Bisphosphonates with a more lipophilic character have been developed and have shown potential as a tumor suppressant. They operate by a slightly different mechanism in which they not only inhibit the key enzyme farnesyl pyrophosphate synthase (FPPS) of the mevalonate pathway but also geranylgeranyl pyrophosphate synthase (GGPS), an enzyme also located in the mevalonate pathway. They do not have the same affinity for the bone minerals. [4]

GGPS has since been successfully inhibited by a novel bisphosphonate compound with a triazole group within R2 and a methyl group in R1. This may become useful in therapies against malignancies like multiple myeloma. [5]

In 2018, a dendritic bisphosphonate was introduced containing three bisphosphonate units. It has shown potential for bone specific delivery of large therapeutic molecules by taking advantage of the high affinity of bisphosphonates to the bone minerals [6]

Mechanism of action

Bisphosphonates inhibit the enzyme FPPS of the mevalonate pathway and prevent the biosynthesis of isoprenoid lipids and eventually the post-translational modifications of osteoclasts. The mevalonate pathway and inhibition of FPPS.gif
Bisphosphonates inhibit the enzyme FPPS of the mevalonate pathway and prevent the biosynthesis of isoprenoid lipids and eventually the post-translational modifications of osteoclasts.

The mechanism of action of the bisphosphonates (BP's) has evolved as new generations of drugs have been developed. The function of the first generation bisphosphonates differs from the more recent nitrogen containing BP's but both are apparently internalised by endocytosis of a membrane-bound vesicle where the drug is most likely in a complex with Ca2+ ions. This does not concern other cells in the bone as this takes place by a selective uptake of osteoclasts. [3]

The common function which applies to all bisphosphonate drugs is a physicochemical interaction with the bone mineral to prevent the physical resorption of the bone by the osteoclasts. This is especially relevant at sites where bone remodelling is most active. [7] [8] The bisphosphonates have an intrinsic affinity for the calcium ions (hydroxyapatite) of the bone mineral just as the endogenous pyrophosphates. The difference lies in the non-hydrolysable carbon-phosphorus bond of the bisphosphonates which prevents their metabolism and at the same time ensure an effective absorption from the gastrointestinal tract. [9]

The primary inhibiting action of the first generation of bisphosphonates on osteoclasts is by inducing apoptosis. The mechanism of action is apparently by the formation of an ATP analogue or metabolite of the bisphosphonates like etidronic acid and clodronic acid. The ATP analogue accumulates in the cytosol of the osteoclast with a cytotoxic effect. [10]

The primary mechanism of action of the more developed nitrogen containing bisphosphonates is however by cellular effects on osteoclasts through inhibition of the mevalonate pathway and in particular the subsequent formation of isoprenoid lipids. The inhibition takes place at a key branch point in the pathway catalyzed by farnesyl pyrophosphate synthase (FPPS). [11] Isoprenoid lipids are necessary for post-translational modifications of small GTP-binding regulatory proteins like Rac, Rho and Ras of the Ras superfamily. The function of osteoclasts depends on them for a variety of cellular processes like apoptosis. [12]

Structure activity relationship

Bisphosphonate drugs and structure of the two side chains Bisphosphonate side chains.png
Bisphosphonate drugs and structure of the two side chains

Pharmacophore

Bisphosphonates mimic the endogenous inorganic pyrophosphate where the oxygen backbone is replaced with carbon (P-C-P for P-O-P). The two additional groups or side chains on the carbon backbone are usually referred to as R1 and R2. R1 is usually a hydroxyl group which enhances the affinity for the calcium by forming a tridentate ligand along with the phosphate groups. The compound can be made more potent by optimizing the structure of the R2 group to best inhibit bone resorption. [13]

Phosphonate

Phosphonate groups in the chemical structure are important for the binding of the drug to the target enzyme. Studies have showed that removal or replacement of the phosphonate group with a carboxylic acid causes drastic loss in potency of the drug and the enzyme inhibitor no longer goes into an isomerized state. [14]

Hydroxyl group (R1 side chain)

Modification of the R1 side chain on bisphosphonates is very minor today, single hydroxyl group at that position seems to give the best results in terms of activity. The hydroxyl group plays a role in forming a water-induced bond with glutamine (Gln240) on the target enzyme. Drugs that have no hydroxyl group initially cause better inhibition than parent compounds, without hydroxyl group the drug seems to fit more easily into the open active site. The absence of hydroxyl group however reduces the ability to hold the target enzyme complex in isomerized state. Biological activity of bisphosphonates with hydroxyl group, therefore, appears over longer time. [14]

Nitrogen (R2 side chain)

Nitrogen containing bisphosphonates are the current most used drugs in the class because of their potency. [15] Studies have showed that nitrogen on bisphosphonates forms hydrogen bond with threonine (Thr201) and the carbonyl part of Lysine (Lys200) on target enzyme, therefore enhancing the binding of the complex. Altering the position of nitrogen can significantly change the ability for the nitrogen hydrogen bond to occur. [14]

Relative potency of nitrogen containing bisphosphonates [16]
Bisphosphonatepotency (relative)
Alendronate1-5
Risedronate10
Zoledronate (IV)50

Modification of nitrogen containing side chain (R2 side chain)

Increased carbon length of the nitrogen R2 side chain alters activity. Side chain that is made out of three carbons has proven to be the most ideal length in terms of activity, increasing or decreasing the length of the chain from there has negative effect on biological activity. Alendronate, a common bisphosphonate drug, has a three carbon length side chain for example. [17] Risedronate has heterocyclic structure containing nitrogen. Heterocyclic nitrogen containing bisphosphonates have revealed better results in terms of activity compared to earlier bisphosphonates with nitrogen bound to carbon chain. Studies on risedronate analogous with different placement of nitrogen on the ring have shown no measurable difference on biological activity. Increased length of carbon chain connected to the ring revealed negative results. [18] Zoledronate is the most potent bisphosphonate drug today only available as intravenous injection. It is the only bisphosphonate drug that has two nitrogen groups in the side chain hence its potency and route of administration differs from other drugs in the same class. [16]

Related Research Articles

<span class="mw-page-title-main">Osteoclast</span> Cell that breaks down bone tissue

An osteoclast is a type of bone cell that breaks down bone tissue. This function is critical in the maintenance, repair, and remodeling of bones of the vertebral skeleton. The osteoclast disassembles and digests the composite of hydrated protein and mineral at a molecular level by secreting acid and a collagenase, a process known as bone resorption. This process also helps regulate the level of blood calcium.

<span class="mw-page-title-main">Bisphosphonate</span> Pharmaceutical drugs for preventing bone loss

Bisphosphonates are a class of drugs that prevent the loss of bone density, used to treat osteoporosis and similar diseases. They are the most commonly prescribed drugs used to treat osteoporosis. They are called bisphosphonates because they have two phosphonate groups. They are thus also called diphosphonates.

<span class="mw-page-title-main">Alendronic acid</span> Chemical compound

Alendronic acid, sold under the brand name Fosamax among others, is a bisphosphonate medication used to treat osteoporosis and Paget's disease of bone. It is taken by mouth. Use is often recommended together with vitamin D, calcium supplementation, and lifestyle changes.

<span class="mw-page-title-main">Prenylation</span> Addition of hydrophobic moieties to proteins or other biomolecules

Prenylation is the addition of hydrophobic molecules to a protein or a biomolecule. It is usually assumed that prenyl groups (3-methylbut-2-en-1-yl) facilitate attachment to cell membranes, similar to lipid anchors like the GPI anchor, though direct evidence of this has not been observed. Prenyl groups have been shown to be important for protein–protein binding through specialized prenyl-binding domains.

Farnesyl pyrophosphate (FPP), also known as farnesyl diphosphate (FDP), is an intermediate in the biosynthesis of terpenes and terpenoids such as sterols and carotenoids. It is also used in the synthesis of CoQ, as well as dehydrodolichol diphosphate.

<span class="mw-page-title-main">Citrate synthase</span> Enzyme found in humans

The enzyme citrate synthase E.C. 2.3.3.1 ] exists in nearly all living cells and stands as a pace-making enzyme in the first step of the citric acid cycle. Citrate synthase is localized within eukaryotic cells in the mitochondrial matrix, but is encoded by nuclear DNA rather than mitochondrial. It is synthesized using cytoplasmic ribosomes, then transported into the mitochondrial matrix.

<span class="mw-page-title-main">Farnesyl-diphosphate farnesyltransferase</span> Class of enzymes

Squalene synthase (SQS) or farnesyl-diphosphate:farnesyl-diphosphate farnesyl transferase is an enzyme localized to the membrane of the endoplasmic reticulum. SQS participates in the isoprenoid biosynthetic pathway, catalyzing a two-step reaction in which two identical molecules of farnesyl pyrophosphate (FPP) are converted into squalene, with the consumption of NADPH. Catalysis by SQS is the first committed step in sterol synthesis, since the squalene produced is converted exclusively into various sterols, such as cholesterol, via a complex, multi-step pathway. SQS belongs to squalene/phytoene synthase family of proteins.

Purine metabolism refers to the metabolic pathways to synthesize and break down purines that are present in many organisms.

<span class="mw-page-title-main">Camptothecin</span> Chemical compound

Camptothecin (CPT) is a topoisomerase inhibitor. It was discovered in 1966 by M. E. Wall and M. C. Wani in systematic screening of natural products for anticancer drugs. It was isolated from the bark and stem of Camptotheca acuminata, a tree native to China used in traditional Chinese medicine. It has been used clinically more recently in China for the treatment of gastrointestinal tumors. CPT showed anticancer activity in preliminary clinical trials, especially against breast, ovarian, colon, lung, and stomach cancers. However, it has low solubility and adverse effects have been reported when used therapeutically, so synthetic and medicinal chemists have developed numerous syntheses of camptothecin and various derivatives to increase the benefits of the chemical, with good results. Four CPT analogues have been approved and are used in cancer chemotherapy today: topotecan, irinotecan, belotecan, and trastuzumab deruxtecan. Camptothecin has also been found in other plants including Chonemorpha fragrans.

The discovery of an orally inactive peptide from snake venom established the important role of angiotensin converting enzyme (ACE) inhibitors in regulating blood pressure. This led to the development of captopril, the first ACE inhibitor. When the adverse effects of captopril became apparent new derivates were designed. Then after the discovery of two active sites of ACE: N-domain and C-domain, the development of domain-specific ACE inhibitors began.

In enzymology, a geranyltranstransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Zaragozic acid</span> Chemical compound

Zaragozic acids are a family of natural products produced by fungi. The first characterized zaragozic acids, A, B, and C were isolated from an unidentified sterile fungal culture, Sporormiella intermedia, and L. elatius, respectively. just outside the European city Zaragoza, Spain on the Jalón river. This family of natural products possesses a unique 4,8-dioxabicyclo[3.2.1]octane core, and vary in their 1-alkyl and their 6-acyl side chains.

<span class="mw-page-title-main">Medication-related osteonecrosis of the jaw</span> Medical condition

Medication-related osteonecrosis of the jaw is progressive death of the jawbone in a person exposed to a medication known to increase the risk of disease, in the absence of a previous radiation treatment. It may lead to surgical complication in the form of impaired wound healing following oral and maxillofacial surgery, periodontal surgery, or endodontic therapy.

Discovery and development of nucleoside and nucleotide reverse-transcriptase inhibitors began in the 1980s when the AIDS epidemic hit Western societies. NRTIs inhibit the reverse transcriptase (RT), an enzyme that controls the replication of the genetic material of the human immunodeficiency virus (HIV). The first NRTI was zidovudine, approved by the U.S. Food and Drug Administration (FDA) in 1987, which was the first step towards treatment of HIV. Six NRTI agents and one NtRTI have followed. The NRTIs and the NtRTI are analogues of endogenous 2´-deoxy-nucleoside and nucleotide. Drug-resistant viruses are an inevitable consequence of prolonged exposure of HIV-1 to anti-HIV drugs.

<span class="mw-page-title-main">Minodronic acid</span> Chemical compound

Minodronic acid is a third-generation bisphosphonate drug. It is approved for use in Japan for the treatment of osteoporosis. Its mechanism of action involves inhibition of farnesyl pyrophosphate synthase activity.

A steroidogenesis inhibitor, also known as a steroid biosynthesis inhibitor, is a type of drug which inhibits one or more of the enzymes that are involved in the process of steroidogenesis, the biosynthesis of endogenous steroids and steroid hormones. They may inhibit the production of cholesterol and other sterols, sex steroids such as androgens, estrogens, and progestogens, corticosteroids such as glucocorticoids and mineralocorticoids, and neurosteroids. They are used in the treatment of a variety of medical conditions that depend on endogenous steroids.

<span class="mw-page-title-main">Discovery and development of gastrointestinal lipase inhibitors</span>

Lipase inhibitors belong to a drug class that is used as an antiobesity agent. Their mode of action is to inhibit gastric and pancreatic lipases, enzymes that play an important role in the digestion of dietary fat. Lipase inhibitors are classified in the ATC-classification system as A08AB . Numerous compounds have been either isolated from nature, semi-synthesized, or fully synthesized and then screened for their lipase inhibitory activity but the only lipase inhibitor on the market is orlistat . Lipase inhibitors have also shown anticancer activity, by inhibiting fatty acid synthase.

<span class="mw-page-title-main">Moenomycin family antibiotics</span> Antibiotic Family

First described in 1965, the moenomycins are a family of phosphoglycolipid antibiotics, metabolites of the bacterial genus Streptomyces. Moenomycin A is the founding member of the antibiotic family with the majority discovered by the end of the late 1970s.

This article is about the discovery and development of 5α-reductase inhibitors (5-ARIs), also known as dihydrotestosterone (DHT) blockers.

<span class="mw-page-title-main">NS5B inhibitor</span> Class of pharmaceutical drugs

Non-structural protein 5B (NS5B) inhibitors are a class of direct-acting antivirals widely used in the treatment of chronic hepatitis C. Depending on site of action and chemical composition, NS5B inhibitors may be categorized into three classes—nucleoside active site inhibitors (NIs), non-nucleoside allosteric inhibitors, and pyrophosphate analogues. Subsequently, all three classes are then subclassified. All inhibit RNA synthesis by NS5B but at different stages/sites resulting in inability of viral RNA replication. Expression of direct-acting NS5B inhibitors does not take place in cells that are not infected by hepatitis C virus, which seems to be beneficial for this class of drugs.

References

  1. 1 2 Widler, Leo; Jaeggi, Knut A.; Glatt, Markus; Müller, Klaus; Bachmann, Rolf; Bisping, Michael; Born, Anne-Ruth; Cortesi, Reto; Guiglia, Gabriela; Jeker, Heidi; Klein, Rémy (2002-08-01). "Highly Potent Geminal Bisphosphonates. From Pamidronate Disodium (Aredia) to Zoledronic Acid (Zometa)". Journal of Medicinal Chemistry. 45 (17): 3721–3738. doi:10.1021/jm020819i. ISSN   0022-2623. PMID   12166945.
  2. Reid, Ian R.; Brown, Jacques P.; Burckhardt, Peter; Horowitz, Zebulun; Richardson, Peter; Trechsel, Ulrich; Widmer, Albert; Devogelaer, Jean-Pierre; Kaufman, Jean-Marc; Jaeger, Philippe; Body, Jean-Jacques (2002-02-28). "Intravenous Zoledronic Acid in Postmenopausal Women with Low Bone Mineral Density". New England Journal of Medicine. 346 (9): 653–661. doi: 10.1056/NEJMoa011807 . ISSN   0028-4793. PMID   11870242.
  3. 1 2 Thompson, Keith; Rogers, Michael J. (2007-09-01). "The Molecular Mechanisms of Action of Bisphosphonates". Clinical Reviews in Bone and Mineral Metabolism. 5 (3): 130–144. doi:10.1007/s12018-007-9004-0. ISSN   1559-0119. S2CID   27893280.
  4. US 8012949,Oldfield, Eric; Zhang, Yonghui& Yin, Fenglin,"Bisphosphonate compounds and methods with enhanced potency for multiple targets including FPPS, GGPPS, and DPPS",published 2011-09-06, assigned to The Board of Trustees of the University of Illinois
  5. Matthiesen, Robert A.; Varney, Michelle L.; Xu, Pauline C.; Rier, Alex S.; Wiemer, David F.; Holstein, Sarah A. (January 2018). "α-Methylation enhances the potency of isoprenoid triazole bisphosphonates as geranylgeranyl diphosphate synthase inhibitors". Bioorganic & Medicinal Chemistry. 26 (2): 376–385. doi:10.1016/j.bmc.2017.10.023. PMC   5752576 . PMID   29248353.
  6. Shimoda, Kazuma; Mitsuoka, Takahiro; Ueda, Kenta; Suemune, Hiroshi; Hirai, Go; Aso, Mariko (2018-12-19). "Synthesis of dendritic bisphosphonates as bone targeting ligands". Tetrahedron Letters. 59 (51): 4528–4531. doi:10.1016/j.tetlet.2018.11.028. ISSN   0040-4039. S2CID   105937637.
  7. Masarachia, P.; Weinreb, M.; Balena, R.; Rodan, G. A. (1996-09-01). "Comparison of the distribution of 3H-alendronate and 3H-Etidronate in rat and mouse bones". Bone. 19 (3): 281–290. doi:10.1016/8756-3282(96)00182-2. ISSN   8756-3282. PMID   8873969.
  8. Sato, M; Grasser, W; Endo, N; Akins, R; Simmons, H; Thompson, D D; Golub, E; Rodan, G A (1991-12-01). "Bisphosphonate action. Alendronate localization in rat bone and effects on osteoclast ultrastructure". Journal of Clinical Investigation. 88 (6): 2095–2105. doi:10.1172/JCI115539. ISSN   0021-9738. PMC   295810 . PMID   1661297.
  9. Benford, Helena L.; Frith, Julie C.; Auriola, Seppo; Mönkkönen, Jukka; Rogers, Michael J. (1999-07-01). "Farnesol and Geranylgeraniol Prevent Activation of Caspases by Aminobisphosphonates: Biochemical Evidence for Two Distinct Pharmacological Classes of Bisphosphonate Drugs". Molecular Pharmacology. 56 (1): 131–140. doi:10.1124/mol.56.1.131. ISSN   0026-895X. PMID   10385693.
  10. Selander, K. S.; Mönkkönen, J.; Karhukorpi, E. K.; Härkönen, P.; Hannuniemi, R.; Väänänen, H. K. (1996-11-01). "Characteristics of clodronate-induced apoptosis in osteoclasts and macrophages". Molecular Pharmacology. 50 (5): 1127–1138. ISSN   0026-895X. PMID   8913344.
  11. Ebetino, Frank H.; Hogan, Anne-Marie L.; Sun, Shuting; Tsoumpra, Maria K.; Duan, Xuchen; Triffitt, James T.; Kwaasi, Aaron A.; Dunford, James E.; Barnett, Bobby L.; Oppermann, Udo; Lundy, Mark W. (2011-07-01). "The relationship between the chemistry and biological activity of the bisphosphonates". Bone. 49 (1): 20–33. doi:10.1016/j.bone.2011.03.774. ISSN   8756-3282. PMID   21497677.
  12. Coxon, F.P.; Rogers, M.J. (2003-01-01). "The Role of Prenylated Small GTP-Binding Proteins in the Regulation of Osteoclast Function". Calcified Tissue International. 72 (1): 80–84. doi:10.1007/s00223-002-2017-2. ISSN   0171-967X. PMID   12370802. S2CID   37621041.
  13. Widler, Leo; Jaeggi, Knut A.; Glatt, Markus; Müller, Klaus; Bachmann, Rolf; Bisping, Michael; Born, Anne-Ruth; Cortesi, Reto; Guiglia, Gabriela; Jeker, Heidi; Klein, Rémy (August 2002). "Highly Potent Geminal Bisphosphonates. From Pamidronate Disodium (Aredia) to Zoledronic Acid (Zometa)". Journal of Medicinal Chemistry. 45 (17): 3721–3738. doi:10.1021/jm020819i. ISSN   0022-2623. PMID   12166945.
  14. 1 2 3 Dunford, James E.; Kwaasi, Aaron A.; Rogers, Michael J.; Barnett, Bobby L.; Ebetino, Frank H.; Russell, R. Graham G.; Oppermann, Udo; Kavanagh, Kathryn L. (April 2008). "Structure–Activity Relationships Among the Nitrogen Containing Bisphosphonates in Clinical Use and Other Analogues: Time-Dependent Inhibition of Human Farnesyl Pyrophosphate Synthase". Journal of Medicinal Chemistry. 51 (7): 2187–2195. doi:10.1021/jm7015733. ISSN   0022-2623. PMID   18327899.
  15. Dunford, James E.; Kwaasi, Aaron A.; Rogers, Michael J.; Barnett, Bobby L.; Ebetino, Frank H.; Russell, R. Graham G.; Oppermann, Udo; Kavanagh, Kathryn L. (2008-04-01). "Structure–Activity Relationships Among the Nitrogen Containing Bisphosphonates in Clinical Use and Other Analogues: Time-Dependent Inhibition of Human Farnesyl Pyrophosphate Synthase". Journal of Medicinal Chemistry. 51 (7): 2187–2195. doi:10.1021/jm7015733. ISSN   0022-2623. PMID   18327899.
  16. 1 2 Tripathi, KD (2013), "Chapter-09 Adrenergic System and Drugs", Essentials of Medical Pharmacology, Jaypee Brothers Medical Publishers (P) Ltd., pp. 124–139, doi:10.5005/jp/books/12021_10, ISBN   9789350259375
  17. Fleisch, Herbert (2002). "Development of bisphosphonates". Breast Cancer Research. 4 (1): 30–34. doi: 10.1186/bcr414 . ISSN   1465-5411. PMC   138713 . PMID   11879557.
  18. van Beek, E. R.; Löwik, C. W. G. M.; Ebetino, F. H.; Papapoulos, S. E. (1998-11-01). "Binding and antiresorptive properties of heterocycle-containing bisphosphonate analogs: structure-activity relationships". Bone. 23 (5): 437–442. doi:10.1016/S8756-3282(98)00120-3. ISSN   8756-3282. PMID   9823450.