Ellen D. Williams | |
---|---|
Born | Oshkosh, Wisconsin, U.S. | December 5, 1953
Alma mater |
|
Awards | |
Scientific career | |
Institutions | |
Thesis | Studies of chemical adsorption using low energy electron diffraction (1982) |
Doctoral advisor | William Henry Weinberg |
Website | www |
Ellen D. Williams ForMemRS (born December 5, 1953) is an American scientist, best known for her research in surface properties and nanotechnology, for her engagement with technical issues in national security, as chief scientist of BP, and for government service as director of ARPA-E. [1]
Born in Oshkosh, Wisconsin, Williams grew up in the suburbs of Detroit, Michigan. [2] [3] She attended Michigan State University and received her Bachelor of Science degree in chemistry in 1976. Her graduate studies were at the California Institute of Technology, where she received her PhD in chemistry in 1981, for research supervised by William Henry Weinberg. [4]
Williams did postdoctoral studies at the University of Maryland under the supervision of R.L. Park from 1981 to 1983. Then promoted to assistant professor in the department of physics and astronomy, which is part of the University of Maryland College of Computer, Mathematical, and Natural Sciences, she advanced to associate professor in 1987, and professor of physics and the Institute for Physical Science and Technology in 1991. Building on her fundamental work on the morphology of solid surfaces, she founded the University of Maryland Materials Research Group in 1991 and led its expansion to become the Materials Research Science and Engineering Center in 1996. She served as its director from 1996 through 2009. In 2000 she was named distinguished university professor. [4] She was elected to the American Academy of Arts and Sciences in 2003, [5] and to the National Academy of Sciences in 2005. [2] She served as the chair of the NAS committee on Technical Issues Concerning the Comprehensive Test Ban Treaty from 2009 to 2011.
In 2010, Williams took a leave of absence from UMD to become chief scientist at BP, a position which she held until April 2014. Then, having been nominated by President Barack Obama in November 2013 to become director of ARPA-E and awaiting Senate confirmation, she became a senior adviser in the office of the Secretary of Energy. She was confirmed on December 8, 2014, and subsequently sworn into her position at ARPA-E. [6] She served as ARPA-E director until the end of the Obama administration in January 2017, and then resumed her position as distinguished university professor at the University of Maryland. In May 2020, Williams was appointed as director of the Earth System Science Interdisciplinary Center at the University of Maryland. Her five-year term as director began in July 2020. [7] She sits on the International Scientific Advisory Committee of Australia's ARC Centre of Excellence in Future Low-Energy Electronics Technologies. [8]
Williams' research in experimental surface science explores fundamental issues in statistical mechanics, particularly including practical applications nanotechnology. Her research group pioneered applications of direct imaging techniques for atomic-scale structures on surfaces. She worked closely with theorists to design experiments to address theoretical and conceptual questions important to the fields of catalysis, thin film growth and nano-electronics. She has published over 200 academic articles, which have been cited over 8000 times. Her most widely cited work includes at least four areas of fundamental research (see Selected Publications below); structure-transport relationships in graphene, surface morphology and step fluctuations, electronic interactions with surface defects, and adsorbate-interactions.
In parallel with her academic career, Williams has worked extensively in providing technical advice to the U.S. government, primarily through the Departments of Energy and Defense. As a result of her experience, in 2009 she was asked to lead a study on issues of verification of nuclear testing, [9] which was one of the concerns cited in the Senate decision not to ratify the treaty in 1999. The resulting report, [10] reviews the verification capabilities in the US and at the Comprehensive Nuclear Test-Ban Organization (CTBTO), and shows that detection capability advanced significantly over the years after the 1999 U.S. decision not to ratify. The report places the state-of-the art detection capability in the context of different types of proliferation threats, and thus provides a valuable context for decision makers. The report also emphasizes the importance of sustaining and continuing to advance technical capabilities for verification, both in the U.S. and at the CTBTO. Williams is the vice-chair of JASON, an independent group of scientists offering advice to the US government on key science and technology issues. [11]
At BP, Williams worked in Group Technology, where she was responsible for assurance of technology programs, and strategic research and program development. Early in her tenure, she set up the initial advisory structure for BP's Gulf of Mexico Research Initiative [12] Within the company, she advocated for increased implementation of advanced computational approaches in molecular chemistry, fluid dynamics, and distributed sensing and ‘big data’ analysis. She also led a strategic multi-university research program on natural resource constraints in the context of energy (the Energy Sustainability Challenge),. [13] In addition to the extensive University research publications that resulted from the program, the ESC team also created three reference booklets on energy-resource issues, “The ESC Materials Handbook", [14] “Water in the Energy Industry,” [15] and “Biomass in the Energy Industry”. [16] Williams has spoken widely about the need for advances in Science and Technology to sustainably supply the energy the world needs. [17]
Prior to Senate confirmation for her role in ARPA-E, Williams served as a senior advisor to the Secretary on DOE's technology transfer policies, issues, and plans. She established the Department's new Office of Technology Transitions [18] to expand the economic impact of the Department's extensive Research and Development activities.
Williams joined ARPA-E just before its sixth anniversary, as the Agency's portfolio of active and alumni technology development programs [19] were forming a pipeline of energy technology innovation that ranges from early stage to more mature stages of technical readiness. As a result of ARPA-E's unique operational model, in which projects are managed both against ambitious technical and commercial goals, increasing numbers of the mature projects were proving attractive to follow-on investors, had products in field testing, or had early stage commercial products. [20] [21] During her tenure at ARPA-E, Williams focused on streamlining ARPA-E's administrative processes to better support the innovation teams working under ARPA-E funding, on strengthening the support given teams in preparing their new technologies for commercial uptake, and on establishing rigorous assessment practices. Under her direction, the Agency produced the first two of a planned annual series of Impact Assessments, which present the challenges, technical achievements, and pathways to commercial impact for selected ARPA-E projects. [22] [23]
In 2016 Williams was elected a Foreign Member of the Royal Society (ForMemRS) of London. [24] Other honors include: [4]
Williams has authored or co-authored numerous peer reviewed scientific journal articles [1] including:
Applying the experimental approaches developed through her career, Williams worked with collaborator Michael Fuhrer to develop key early understanding about structural fluctuations and defect interactions in defining graphene's properties.
Williams’ research group discovered the remarkable ability of silicon surfaces to undergo reversible micron-scale changes in structure, and demonstrated how such changes are thermodynamically defined by changes in the free-energy of steps on the surface. The group's subsequent experimental work elegantly placed observations of structures and fluctuations of steps in a universally applicable theoretical formalism.
Williams’ group also explored the interaction of surface structure with electric fields and currents. They demonstrated how the incredibly small momentum-transfer due to an electron colliding with an atom can none-the-less cause micron-scale rearrangements of the material near the surfaces.
Williams’ graduate work explored how catalytically important molecules such as carbon monoxide and hydrogen interact with metal surfaces. She made seminal observations of how such molecules organize on surfaces and how the molecules (which are called ‘adsorbates’ once they are on the surface) interact with each other. The nature of such adsorbates and their relationship to the formation of structures on surfaces informed all of Williams’ subsequent work.
In physics, a plasmon is a quantum of plasma oscillation. Just as light consists of photons, the plasma oscillation consists of plasmons. The plasmon can be considered as a quasiparticle since it arises from the quantization of plasma oscillations, just like phonons are quantizations of mechanical vibrations. Thus, plasmons are collective oscillations of the free electron gas density. For example, at optical frequencies, plasmons can couple with a photon to create another quasiparticle called a plasmon polariton.
Graphene is an allotrope of carbon consisting of a single layer of atoms arranged in a hexagonal lattice nanostructure. The name is derived from "graphite" and the suffix -ene, reflecting the fact that the graphite allotrope of carbon contains numerous double bonds.
Mildred Dresselhaus, known as the "Queen of Carbon Science", was an American physicist, materials scientist, and nanotechnologist. She was an institute professor and professor of both physics and electrical engineering at the Massachusetts Institute of Technology. She also served as the president of the American Physical Society, the chair of the American Association for the Advancement of Science, as well as the director of science in the US Department of Energy under the Bill Clinton Government. Dresselhaus won numerous awards including the Presidential Medal of Freedom, the National Medal of Science, the Enrico Fermi Award, the Kavli Prize and the Vannevar Bush Award.
Sylvia Teresse Ceyer is a professor of chemistry at MIT, holding the John C. Sheehan Chair in Chemistry. Until 2006, she held the chemistry chair of the National Academy of Sciences.
Marvin Lou Cohen is an American–Canadian theoretical physicist. He is a physics professor at the University of California, Berkeley. Cohen is a leading expert in the field of condensed matter physics. He is widely known for his seminal work on the electronic structure of solids.
Graphene nanoribbons are strips of graphene with width less than 100 nm. Graphene ribbons were introduced as a theoretical model by Mitsutaka Fujita and coauthors to examine the edge and nanoscale size effect in graphene.
Alex K. Zettl is an American experimental physicist, educator, and inventor.
Silicene is a two-dimensional allotrope of silicon, with a hexagonal honeycomb structure similar to that of graphene. Contrary to graphene, silicene is not flat, but has a periodically buckled topology; the coupling between layers in silicene is much stronger than in multilayered graphene; and the oxidized form of silicene, 2D silica, has a very different chemical structure from graphene oxide.
Richard Magee Osgood Jr. was an American applied and pure physicist. He was Higgins Professor of Electrical Engineering and Applied Physics at Columbia University.
A rapidly increasing list of graphene production techniques have been developed to enable graphene's use in commercial applications.
Graphene is a semimetal whose conduction and valence bands meet at the Dirac points, which are six locations in momentum space, the vertices of its hexagonal Brillouin zone, divided into two non-equivalent sets of three points. The two sets are labeled K and K'. The sets give graphene a valley degeneracy of gv = 2. By contrast, for traditional semiconductors the primary point of interest is generally Γ, where momentum is zero. Four electronic properties separate it from other condensed matter systems.
Epitaxial graphene growth on silicon carbide (SiC) by thermal decomposition is a method to produce large-scale few-layer graphene (FLG). Graphene is one of the most promising nanomaterials for the future because of its various characteristics, like strong stiffness and high electric and thermal conductivity. Still, reproducible production of Graphene is difficult, thus many different techniques have been developed. The main advantage of epitaxial graphene growth on silicon carbide over other techniques is to obtain graphene layers directly on a semiconducting or semi-insulating substrate which is commercially available.
Michael S. Fuhrer is a US/Australian physicist recognised internationally as a pioneer in atomically-thin (two-dimensional) materials, including graphene and novel topological materials, with expertise in fabrication and characterisation of their electronic and optical properties.
Alessandra Lanzara is an Italian-American physicist and the distinguished Charles Kittel Professor of physics at the University of California, Berkeley since 2002, where she leads an experimental materials physics group. She is the founding director of Center for Sustainable Innovation at UCB and the co-founder of Quantum Advanced Detection (QUAD) LLC.
Petra Rudolf is a German and Italian solid state physicist. As of 2003, Rudolf has been a professor at the Materials Science Centre, University of Groningen, Netherlands.
Patricia Ann Thiel was an American chemist and materials scientist who served as a distinguished professor of chemistry at Iowa State University. She was known for her research on atomic-scale structures and processes on solid surfaces.
Francesca Iacopi is an engineer, researcher and an academic. She specializes in materials and nanoelectronics engineering and is a professor at the University of Technology Sydney. She is a chief investigator of the ARC Centre of Excellence in Transformative Meta-Optical Systems, a Fellow of the Institution of Engineers Australia, and a senior member of Institute of Electrical and Electronics Engineers.
Aron Pinczuk was an Argentine-American experimental condensed matter physicist who was professor of physics and professor of applied physics at Columbia University. He was known for his work on correlated electronic states in two dimensional systems using photoluminescence and resonant inelastic light scattering methods. He was a fellow of the American Physical Society, the American Association for the Advancement of Science and the American Academy of Arts and Sciences.
Gene Frederick Dresselhaus was an American condensed matter physicist. He is known as a pioneer of spintronics and for his 1955 discovery of the eponymous Dresselhaus effect.
Maria C. Asensio is a Spanish-Argentinian physical chemist, academic, researcher, and author. She is a Full Research Professor at the Materials Science Institute of Madrid (ICMM) of the Spanish National Research Council (CSIC) and Chair of the CSIC Research Associated Unit-MATINÉE created between the ICMM and the Institute of Materials Science (ICMUV) of the Valencia University.
{{cite journal}}
: Cite journal requires |journal=
(help)