Endozoicomonas | |
---|---|
Scientific classification | |
Domain: | |
Phylum: | |
Class: | |
Order: | |
Family: | Endozoicomonadaceae |
Genus: | Endozoicomonas Kurahashi and Yokota 2007 [1] |
Type species | |
Endozoicomonas elysicola [1] | |
Species | |
E. acroporae [1] Contents | |
Synonyms | |
Endozoicomonas is a genus of Gram-negative, aerobic or facultatively anaerobic, chemoorganotrophic, rod-shaped, marine bacteria from the family of Endozoicomonadaceae. [1] [3] [4] [5] [6] Endozoicomonas are symbionts of marine animals. [7]
The genus was firstly proposed in 2007 after isolating an unknown Gammaproteobacteria from the sea slug Elysia ornata . Called E. numazuensis, it was the first of many diverse species now known, and was collected from seawater off the coast of Izu-Miyake Island, Japan, at a depth of 15 m. [7] [8] Many new species have been identified after this:
At the moment, ten species are validly published under the ICNP. [14]
Despite the abundance of Endozoicomonas symbionts, only three complete Endozoicomonas genomes are publicly available (E. elysicola, E. montiporae, and E. numazuensis), isolated from a sea slug, coral, and a sponge, respectively. [15] [16] For their sequencing analyses, culture-independent methods of genome sequencing were used, including meta-genomic binning and single cell genomics. Endozoicomonas species have large genomes ranging from 4.049 Mb (Endozoicomonas sp. AB1) to 6.69 Mb (E. elysicola DSM22380). [17]
Research led to the discovery that its genome is enriched with genes associated with transporter activity of carbon sugars, as well as cell secretion and transposase activity, suggesting that these organisms have a potential role in the up-cycling of carbohydrates or the supply of proteins to their host. These skills can help them to quickly adapt to a new host or take advantage of a new niche. Although none of the Endozoicomonas genomes have genes for fixing nitrogen directly, some species have several forms of nitrate reductase, accounting for the conversion of nitrate to nitrite and of nitrite to ammonia, which could then be secreted. Endozoicomonas contain in their own genome for the assimilation of ammonia through the synthesis of glutamine and glutamate. They can also synthesize other amino acids like alanine, aspartate, cysteine, glycine, homocysteine, homoserine, leucine, lysine, methionine, serine, and threonine, indicating strain-specific functions. [17]
The Endozoicomonas genus also plays an important role in the coral sulfur cycle. E. acroporae strains cannot only metabolize dimethylsulfoniopropionate (DMSP) to produce dimethylsulfide (DMS), but also use DMSP as a carbon source for growth and survival. Through several research done, the first DMSP-related operon in E. acroporae was also identified, which links DMSP metabolism to the central carbon cycle. [17] [18]
A high metabolic specificity is shown by Endozoicomonas samples isolated from the intertidal marine sponge O. papilla. Indeed, the presence of gene clusters encoding for the lactate, L-rhamnose metabolism, and phenylacetic acid (PA) degradation pathway indicates the probable ability of these microorganisms to utilize alternative carbon sources. [19]
Endozoicomonas are mutualistic organisms that have a symbiotic relationship with many marine animals. Found in all oceans of the world, they inhabit mostly in warm and mildly temperate waters located between the tropics, existing from the intertidal zone to the open ocean. [15] Their most common association is the one shared with corals, especially with those found in shallow waters, but can also thrive in deep-water corals as well, locating themselves in the soft epithelial tissue of these. [8] [16] Also, they have been found to share this relationship with many other invertebrates such as sponges, tunicates, sea slugs, and some mollusks. [17] [20]
The presence of Endozoicomonas in the marine ecosystem is associated with the overall coral health, serving as a marker of the general well-being of corals and the organisms that inhabit in coral reefs, as well as reducing the presence of pathogenic bacteria that may try to infect the coral. [21] Other functions associated to Endozoicomonas relate to amino acid and vitamin synthesis, in the production of metabolites while contributing with nitrogen and sulfur cycles, [7] and to transfer organic molecules which avidly helps in the nutrition of its host, yet their exact function and the way in which their presence affects all these organisms is still yet to be determined. [18] [22]
During coral bleaching, Endozoicomonas populations remain present in the water in low amounts, indicating a certain level of resilience, and the absence of a healthy coral community leads to changes in the population amounts of these bacteria. [23] Other environmental factors and stressors such as temperature changes, acidification of the ocean, and anthropogenic activities have a direct impact as well in the abundance of these microorganisms in their habitat.
In contrast to their reputation as beneficial symbionts, their genome reveals potential mechanisms for bacterial adaptation and some pathogenic species are being discovered and described to be affecting fish larvae cultures, causing epitheliocystis and further leading to mass mortality. [24] [25]
Bacillus is a genus of Gram-positive, rod-shaped bacteria, a member of the phylum Bacillota, with 266 named species. The term is also used to describe the shape (rod) of other so-shaped bacteria; and the plural Bacilli is the name of the class of bacteria to which this genus belongs. Bacillus species can be either obligate aerobes which are dependent on oxygen, or facultative anaerobes which can survive in the absence of oxygen. Cultured Bacillus species test positive for the enzyme catalase if oxygen has been used or is present.
An endosymbiont or endobiont is an organism that lives within the body or cells of another organism. Typically the two organisms are in a mutualistic relationship. Examples are nitrogen-fixing bacteria, which live in the root nodules of legumes, single-cell algae inside reef-building corals, and bacterial endosymbionts that provide essential nutrients to insects.
Enterobacter is a genus of common Gram-negative, facultatively anaerobic, rod-shaped, non-spore-forming bacteria of the family Enterobacteriaceae. Cultures are found in soil, water, sewage, feces and gut environments. It is the type genus of the order Enterobacterales. Several strains of these bacteria are pathogenic and cause opportunistic infections in immunocompromised hosts and in those who are on mechanical ventilation. The urinary and respiratory tracts are the most common sites of infection. The genus Enterobacter is a member of the coliform group of bacteria. It does not belong to the fecal coliforms group of bacteria, unlike Escherichia coli, because it is incapable of growth at 44.5 °C in the presence of bile salts. Some of them show quorum sensing properties.
Gammaproteobacteria is a class of bacteria in the phylum Pseudomonadota. It contains about 250 genera, which makes it the most genus-rich taxon of the Prokaryotes. Several medically, ecologically, and scientifically important groups of bacteria belong to this class. All members of this class are Gram-negative. It is the most phylogenetically and physiologically diverse class of the Pseudomonadota.
Shewanella is the sole genus included in the marine bacteria family Shewanellaceae. Some species within it were formerly classed as Alteromonas. Shewanella consists of facultatively anaerobic Gram-negative rods, most of which are found in extreme aquatic habitats where the temperature is very low and the pressure is very high. Shewanella bacteria are a normal component of the surface flora of fish and are implicated in fish spoilage. Shewanella chilikensis, a species of the genus Shewanella commonly found in the marine sponges of Saint Martin's Island of the Bay of Bengal, Bangladesh.
In taxonomy, Roseobacter is a genus of the Rhodobacteraceae. The Roseobacter clade falls within the {alpha}-3 subclass of the class Alphaproteobacteria. The first strain descriptions appeared in 1991 which described members Roseobacterlitoralis and Roseobacterdenitrificans, both pink-pigmented bacteriochlorophyll a-producing strains isolated from marine algae. The role members of the Roseobacter lineage play in marine biogeochemical cycles and climate change cannot be overestimated. Roseobacters make up 25% of coastal marine bacteria and members of this lineage process a significant portion of the total carbon in the marine environment. Roseobacter clade plays an important role in global carbon and sulphur cycles. It can also degrade aromatic compounds, uptake trace metal, and form symbiotic relationship. In term of its application, Roseobacter clade produces bioactive compounds, has been used widely in aquaculture and quorum sensing.
Staphylococcus is a genus of Gram-positive bacteria in the family Staphylococcaceae from the order Bacillales. Under the microscope, they appear spherical (cocci), and form in grape-like clusters. Staphylococcus species are facultative anaerobic organisms.
Arsenophonus nasoniae is a species of bacterium which was previously isolated from Nasonia vitripennis, a species of parasitoid wasp. These wasps are generalists which afflict the larvae of parasitic carrion flies such as blowflies, houseflies and flesh flies. A. nasoniae belongs to the phylum Pseudomonadota and family Morganellaceae. The genus Arsenophonus, has a close relationship to the Proteus (bacterium) rather than to that of Salmonella and Escherichia. The genus is composed of gammaproteobacterial, secondary-endosymbionts which are gram-negative. Cells are non-flagellated, non-motile, non-spore forming and form long to highly filamentous rods. Cellular division is exhibited through septation. The name 'Arsenophonus nasoniae gen. nov., sp. nov.' was therefore proposed for the discovered bacterium due to its characteristics and its microbial interaction with N. vitripennis. The type strain of A. nasoniae is Strain SKI4.
Sodalis glossinidius is a species of bacteria, the type and only species of its genus. It is a microaerophilic secondary endosymbiont of the tsetse fly. Strain M1T is the type strain. Sodalis glossinidius is the only gammaproteobacterial insect symbiont to be cultured and thus amenable to genetic modification, suggesting that it could be used as part of a control strategy by vectoring antitrypanosome genes. The organism may increase the susceptibility of tsetse flies to trypanosomes.
Sodalis is a genus of bacteria within the family Pectobacteriaceae. This genus contains several insect endosymbionts and also a free-living group. It is studied due to its potential use in the biological control of the tsetse fly. Sodalis is an important model for evolutionary biologists because of its nascent endosymbiosis with insects.
Bacillus sonorensis is a species of bacteria with type strain L87-10T. Its genome has been sequenced.
Microbial symbiosis in marine animals was not discovered until 1981. In the time following, symbiotic relationships between marine invertebrates and chemoautotrophic bacteria have been found in a variety of ecosystems, ranging from shallow coastal waters to deep-sea hydrothermal vents. Symbiosis is a way for marine organisms to find creative ways to survive in a very dynamic environment. They are different in relation to how dependent the organisms are on each other or how they are associated. It is also considered a selective force behind evolution in some scientific aspects. The symbiotic relationships of organisms has the ability to change behavior, morphology and metabolic pathways. With increased recognition and research, new terminology also arises, such as holobiont, which the relationship between a host and its symbionts as one grouping. Many scientists will look at the hologenome, which is the combined genetic information of the host and its symbionts. These terms are more commonly used to describe microbial symbionts.
A holobiont is an assemblage of a host and the many other species living in or around it, which together form a discrete ecological unit through symbiosis, though there is controversy over this discreteness. The components of a holobiont are individual species or bionts, while the combined genome of all bionts is the hologenome. The holobiont concept was initially introduced by the German theoretical biologist Adolf Meyer-Abich in 1943, and then apparently independently by Dr. Lynn Margulis in her 1991 book Symbiosis as a Source of Evolutionary Innovation. The concept has evolved since the original formulations. Holobionts include the host, virome, microbiome, and any other organisms which contribute in some way to the functioning of the whole. Well-studied holobionts include reef-building corals and humans.
Oceanobacillus is a Gram-positive, rod-shaped and motile bacteria genus from the family of Bacillaceae with a peritrichous flagella. Oceanobacillus species are commonly found in saline environment.
Dokdonia is a genus of bacteria in the family Flavobacteriaceae and phylum Bacteroidota.
Endozoicomonas euniceicola is a Gram-negative, facultatively anaerobic and rod-shaped bacterium from the genus of Endozoicomonas which has been isolated from the octocorals Eunicea fusca and Plexaura.
Endozoicomonas numazuensis is a rod-shaped, facultatively anaerobic and non-motile bacterium from the genus of Endozoicomonas which has been isolated from a marine sponge from Numazu in Japan.
Endozoicomonas gorgoniicola is a Gram-negative and facultative anaerobic bacterium from the genus of Endozoicomonas. Individual cells are motile and rod-shaped. Bacteria in this genus are symbionts of coral. E. gorgoniicola live specifically with soft coral and were originally isolated from a species of Plexaura, an octocoral, off the coast of Bimini in the Bahamas. The presence of this bacterium in a coral microbiome is associated with coral health.
Thiodictyon is a genus of gram-negative bacterium classified within purple sulfur bacteria (PSB).
Commensalibacter is a genus of Gram-negative, aerobic and rod-shaped bacteria from the family of Acetobacteraceae which was originally isolated from Drosophila melanogaster. The complete genome of the type strain C. intestini A911T has been sequenced.
{{cite journal}}
: CS1 maint: numeric names: authors list (link)