Endozoicomonas

Last updated

Contents

Endozoicomonas
Scientific classification
Domain:
Phylum:
Class:
Order:
Family:
Endozoicomonadaceae
Genus:
Endozoicomonas

Kurahashi and Yokota 2007 [1]
Type species
Endozoicomonas elysicola [1]
Species

E. acroporae [1]
E. arenosclerae [1]
E. ascidiicola [1]
E. atrinae [1]
E. coralli [1]
E. elysicola [1]
E. euniceicola [1]
E. gorgoniicola [2]
E. montiporae [1]
E. numazuensis [1]

Synonyms

Elysiobacter [3]
Endozoicimonas [3]

Endozoicomonas is a genus of Gram-negative, aerobic or facultatively anaerobic, chemoorganotrophic, rod-shaped, marine bacteria from the family of Endozoicomonadaceae. [1] [3] [4] [5] [6] Endozoicomonas are symbionts of marine animals. [7]

Scientific History

A coral and Endozoicomonas bacteria Stylophora pistillata coral and Endozoicomonas bacteria.webp
A coral and Endozoicomonas bacteria

The genus was firstly proposed in 2007 after isolating an unknown Gammaproteobacteria from the sea slug Elysia ornata . Called E. numazuensis, it was the first of many diverse species now known, and was collected from seawater off the coast of Izu-Miyake Island, Japan, at a depth of 15 m. [7] [8] Many new species have been identified after this:

At the moment, ten species are validly published under the ICNP. [14]

Biology and Biochemistry

Genome

Despite the abundance of Endozoicomonas symbionts, only three complete Endozoicomonas genomes are publicly available (E. elysicola, E. montiporae, and E. numazuensis), isolated from a sea slug, coral, and a sponge, respectively. [15] [16] For their sequencing analyses, culture-independent methods of genome sequencing were used, including meta-genomic binning and single cell genomics. Endozoicomonas species have large genomes ranging from 4.049 Mb (Endozoicomonas sp. AB1) to 6.69 Mb (E. elysicola DSM22380). [17]

Metabolism

Research led to the discovery that its genome is enriched with genes associated with transporter activity of carbon sugars, as well as cell secretion and transposase activity, suggesting that these organisms have a potential role in the up-cycling of carbohydrates or the supply of proteins to their host. These skills can help them to quickly adapt to a new host or take advantage of a new niche. Although none of the Endozoicomonas genomes have genes for fixing nitrogen directly, some species have several forms of nitrate reductase, accounting for the conversion of nitrate to nitrite and of nitrite to ammonia, which could then be secreted. Endozoicomonas contain in their own genome for the assimilation of ammonia through the synthesis of glutamine and glutamate. They can also synthesize other amino acids like alanine, aspartate, cysteine, glycine, homocysteine, homoserine, leucine, lysine, methionine, serine, and threonine, indicating strain-specific functions. [17]

The Endozoicomonas genus also plays an important role in the coral sulfur cycle. E. acroporae strains cannot only metabolize dimethylsulfoniopropionate (DMSP) to produce dimethylsulfide (DMS), but also use DMSP as a carbon source for growth and survival. Through several research done, the first DMSP-related operon in E. acroporae was also identified, which links DMSP metabolism to the central carbon cycle. [17] [18]

A high metabolic specificity is shown by Endozoicomonas samples isolated from the intertidal marine sponge O. papilla. Indeed, the presence of gene clusters encoding for the lactate, L-rhamnose metabolism, and phenylacetic acid (PA) degradation pathway indicates the probable ability of these microorganisms to utilize alternative carbon sources. [19]

Ecology

Habitat

Endozoicomonas are mutualistic organisms that have a symbiotic relationship with many marine animals. Found in all oceans of the world, they inhabit mostly in warm and mildly temperate waters located between the tropics, existing from the intertidal zone to the open ocean. [15] Their most common association is the one shared with corals, especially with those found in shallow waters, but can also thrive in deep-water corals as well, locating themselves in the soft epithelial tissue of these. [8] [16] Also, they have been found to share this relationship with many other invertebrates such as sponges, tunicates, sea slugs, and some mollusks. [17] [20]

Role in the environment

The presence of Endozoicomonas in the marine ecosystem is associated with the overall coral health, serving as a marker of the general well-being of corals and the organisms that inhabit in coral reefs, as well as reducing the presence of pathogenic bacteria that may try to infect the coral. [21] Other functions associated to Endozoicomonas relate to amino acid and vitamin synthesis, in the production of metabolites while contributing with nitrogen and sulfur cycles, [7] and to transfer organic molecules which avidly helps in the nutrition of its host, yet their exact function and the way in which their presence affects all these organisms is still yet to be determined. [18] [22]

During coral bleaching, Endozoicomonas populations remain present in the water in low amounts, indicating a certain level of resilience, and the absence of a healthy coral community leads to changes in the population amounts of these bacteria. [23] Other environmental factors and stressors such as temperature changes, acidification of the ocean, and anthropogenic activities have a direct impact as well in the abundance of these microorganisms in their habitat.

In contrast to their reputation as beneficial symbionts, their genome reveals potential mechanisms for bacterial adaptation and some pathogenic species are being discovered and described to be affecting fish larvae cultures, causing epitheliocystis and further leading to mass mortality. [24] [25]

Related Research Articles

<i>Bacillus</i> Genus of bacteria

Bacillus is a genus of Gram-positive, rod-shaped bacteria, a member of the phylum Bacillota, with 266 named species. The term is also used to describe the shape (rod) of other so-shaped bacteria; and the plural Bacilli is the name of the class of bacteria to which this genus belongs. Bacillus species can be either obligate aerobes which are dependent on oxygen, or facultative anaerobes which can survive in the absence of oxygen. Cultured Bacillus species test positive for the enzyme catalase if oxygen has been used or is present.

<span class="mw-page-title-main">Endosymbiont</span> Organism that lives within the body or cells of another organism

An endosymbiont or endobiont is any organism that lives within the body or cells of another organism most often, though not always, in a mutualistic relationship. This phenomenon is known as endosymbiosis. Examples are nitrogen-fixing bacteria, which live in the root nodules of legumes, single-cell algae inside reef-building corals and bacterial endosymbionts that provide essential nutrients to insects.

<i>Enterobacter</i> Genus of bacteria

Enterobacter is a genus of common Gram-negative, facultatively anaerobic, rod-shaped, non-spore-forming bacteria of the family Enterobacteriaceae. Cultures are found in soil, water, sewage, feces and gut environments. It is the type genus of the order Enterobacterales. Several strains of these bacteria are pathogenic and cause opportunistic infections in immunocompromised hosts and in those who are on mechanical ventilation. The urinary and respiratory tracts are the most common sites of infection. The genus Enterobacter is a member of the coliform group of bacteria. It does not belong to the fecal coliforms group of bacteria, unlike Escherichia coli, because it is incapable of growth at 44.5 °C in the presence of bile salts. Some of them show quorum sensing properties.

<span class="mw-page-title-main">Gammaproteobacteria</span> Class of bacteria

Gammaproteobacteria is a class of bacteria in the phylum Pseudomonadota. It contains about 250 genera, which makes it the most genus-rich taxon of the Prokaryotes. Several medically, ecologically, and scientifically important groups of bacteria belong to this class. All members of this class are Gram-negative. It is the most phylogenetically and physiologically diverse class of the Pseudomonadota.

<i>Roseobacter</i> Genus of bacteria

In taxonomy, Roseobacter is a genus of the Rhodobacteraceae. The Roseobacter clade falls within the {alpha}-3 subclass of the class Alphaproteobacteria. The first strain descriptions appeared in 1991 which described members Roseobacterlitoralis and Roseobacterdenitrificans, both pink-pigmented bacteriochlorophyll a-producing strains isolated from marine algae. The role members of the Roseobacter lineage play in marine biogeochemical cycles and climate change cannot be overestimated. Roseobacters make up 25% of coastal marine bacteria and members of this lineage process a significant portion of the total carbon in the marine environment. Roseobacter clade plays an important role in global carbon and sulphur cycles. It can also degrade aromatic compounds, uptake trace metal, and form symbiotic relationship. In term of its application, Roseobacter clade produces bioactive compounds, has been used widely in aquaculture and quorum sensing.

Arsenophonus nasoniae is a species of bacterium which was previously isolated from Nasonia vitripennis, a species of parasitoid wasp. These wasps are generalists which afflict the larvae of parasitic carrion flies such as blowflies, houseflies and flesh flies. A. nasoniae belongs to the phylum Pseudomonadota and family Morganellaceae. The genus Arsenophonus, has a close relationship to the Proteus (bacterium) rather than to that of Salmonella and Escherichia. The genus is composed of gammaproteobacterial, secondary-endosymbionts which are gram-negative. Cells are non-flagellated, non-motile, non-spore forming and form long to highly filamentous rods. Cellular division is exhibited through septation. The name 'Arsenophonus nasoniae gen. nov., sp. nov.' was therefore proposed for the discovered bacterium due to its characteristics and its microbial interaction with N. vitripennis. The type strain of A. nasoniae is Strain SKI4.

Sodalis is a genus of bacteria within the family Pectobacteriaceae. This genus contains several insect endosymbionts and also a free-living group. It is studied due to its potential use in the biological control of the tsetse fly. Sodalis is an important model for evolutionary biologists because of its nascent endosymbiosis with insects.

Bacillus sonorensis is a species of bacteria with type strain L87-10T. Its genome has been sequenced.

<span class="mw-page-title-main">Marine microbial symbiosis</span>

Microbial symbiosis in marine animals was not discovered until 1981. In the time following, symbiotic relationships between marine invertebrates and chemoautotrophic bacteria have been found in a variety of ecosystems, ranging from shallow coastal waters to deep-sea hydrothermal vents. Symbiosis is a way for marine organisms to find creative ways to survive in a very dynamic environment. They are different in relation to how dependent the organisms are on each other or how they are associated. It is also considered a selective force behind evolution in some scientific aspects. The symbiotic relationships of organisms has the ability to change behavior, morphology and metabolic pathways. With increased recognition and research, new terminology also arises, such as holobiont, which the relationship between a host and its symbionts as one grouping. Many scientists will look at the hologenome, which is the combined genetic information of the host and its symbionts. These terms are more commonly used to describe microbial symbionts.

<span class="mw-page-title-main">Holobiont</span> Host and associated species living as a discrete ecological unit

A holobiont is an assemblage of a host and the many other species living in or around it, which together form a discrete ecological unit through symbiosis, though there is controversy over this discreteness. The components of a holobiont are individual species or bionts, while the combined genome of all bionts is the hologenome. The holobiont concept was initially introduced by the German theoretical biologist Adolf Meyer-Abich in 1943, and then apparently independently by Dr. Lynn Margulis in her 1991 book Symbiosis as a Source of Evolutionary Innovation. The concept has evolved since the original formulations. Holobionts include the host, virome, microbiome, and any other organisms which contribute in some way to the functioning of the whole. Well-studied holobionts include reef-building corals and humans.

Oceanobacillus is a Gram-positive, rod-shaped and motile bacteria genus from the family of Bacillaceae with a peritrichous flagella. Oceanobacillus species are commonly found in saline environment.

Hologenomics is the omics study of hologenomes. A hologenome is the whole set of genomes of a holobiont, an organism together with all co-habitating microbes, other life forms, and viruses. While the term hologenome originated from the hologenome theory of evolution, which postulates that natural selection occurs on the holobiont level, hologenomics uses an integrative framework to investigate interactions between the host and its associated species. Examples include gut microbe or viral genomes linked to human or animal genomes for host-microbe interaction research. Hologenomics approaches have also been used to explain genetic diversity in the microbial communities of marine sponges.

Dokdonia is a genus of bacteria in the family Flavobacteriaceae and phylum Bacteroidota.

Endozoicomonas acroporae is a Gram-negative, rod-shaped, aerobic and non-motile bacterium from the genus of Endozoicomonas which has been isolated from the coral Acropora.

Endozoicomonas euniceicola is a Gram-negative, facultatively anaerobic and rod-shaped bacterium from the genus of Endozoicomonas which has been isolated from the octocorals Eunicea fusca and Plexaura.

Endozoicomonas numazuensis is a rod-shaped, facultatively anaerobic and non-motile bacterium from the genus of Endozoicomonas which has been isolated from a marine sponge from Numazu in Japan.

Endozoicomonas gorgoniicola is a Gram-negative and facultative anaerobic bacterium from the genus of Endozoicomonas. Individual cells are motile and rod-shaped. Bacteria in this genus are symbionts of coral. E. gorgoniicola live specifically with soft coral and were originally isolated from a species of Plexaura, an octocoral, off the coast of Bimini in the Bahamas. The presence of this bacterium in a coral microbiome is associated with coral health.

<span class="mw-page-title-main">Marine microbiome</span>

All animals on Earth form associations with microorganisms, including protists, bacteria, archaea, fungi, and viruses. In the ocean, animal–microbial relationships were historically explored in single host–symbiont systems. However, new explorations into the diversity of marine microorganisms associating with diverse marine animal hosts is moving the field into studies that address interactions between the animal host and a more multi-member microbiome. The potential for microbiomes to influence the health, physiology, behavior, and ecology of marine animals could alter current understandings of how marine animals adapt to change, and especially the growing climate-related and anthropogenic-induced changes already impacting the ocean environment.

Commensalibacter is a genus of Gram-negative, aerobic and rod-shaped bacteria from the family of Acetobacteraceae which was originally isolated from Drosophila melanogaster. The complete genome of the type strain C. intestini A911T has been sequenced.

<i>Snodgrassella alvi</i> Species of bacterium

Snodgrassella alvi is a species of Gram-negative bacteria within the Neisseriaceae and was previously the only known species of the genus Snodgrassella. It was isolated and scientifically described in 2012 by Waldan K. Kwong and Nancy A. Moran, who named the bacteria after the American entomologist Robert Evans Snodgrass.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 Parte, A.C. "Endozoicomonas". LPSN .
  2. Pike, Rebecca E.; Haltli, Brad; Kerr, Russell G. (2013). "Description of Endozoicomonaseuniceicola sp. nov. and Endozoicomonas gorgoniicola sp. nov., bacteria isolated from the octocorals Eunicea fusca and Plexaura sp., and an emended description of the genus Endozoicomonas" (PDF). International Journal of Systematic and Evolutionary Microbiology. 63 (11): 4294–4302. doi:10.1099/ijs.0.051490-0. PMID   23832969.
  3. 1 2 3 "Endozoicomonas". www.uniprot.org.
  4. Parker, Charles Thomas; Wigley, Sarah; Garrity, George M (1 January 2003). Parker, Charles Thomas; Garrity, George M (eds.). "Taxonomic Abstract for the genera". The NamesforLife Abstracts. doi:10.1601/tx.11178 (inactive 2024-04-17).{{cite journal}}: CS1 maint: DOI inactive as of April 2024 (link)
  5. 1 2 Sheu, Shih-Yi; Lin, Kai-Rou; Hsu, Ming-yuan; Sheu, Der-Shyan; Tang, Sen-Lin; Chen, Wen-MingYR 2017 (2017). "Endozoicomonas acroporae sp. nov., isolated from Acropora coral". International Journal of Systematic and Evolutionary Microbiology. 67 (10): 3791–3797. doi: 10.1099/ijsem.0.002194 . ISSN   1466-5034. PMID   28879847.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  6. Hochart, Corentin; Paoli, Lucas; Ruscheweyh, Hans-Joachim; Salazar, Guillem; Boissin, Emilie; Romac, Sarah; Poulain, Julie; Bourdin, Guillaume; Iwankow, Guillaume; Moulin, Clémentine; Ziegler, Maren; Porro, Barbara; Armstrong, Eric J.; Hume, Benjamin C. C.; Aury, Jean-Marc (2023-06-01). "Ecology of Endozoicomonadaceae in three coral genera across the Pacific Ocean". Nature Communications. 14 (1): 3037. doi: 10.1038/s41467-023-38502-9 . hdl: 20.500.11850/616063 . ISSN   2041-1723.
  7. 1 2 3 4 5 Neave, Matthew J.; Apprill, Amy; Ferrier-Pagès, Christine; Voolstra, Christian R. (24 August 2016). "Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas". Applied Microbiology and Biotechnology. 100 (19): 8315–8324. doi:10.1007/s00253-016-7777-0. PMC   5018254 . PMID   27557714.
  8. 1 2 Kurahashi, Midori; Yokota, Akira (2007-04-19). "Endozoicomonas elysicola gen. nov., sp. nov., a γ-proteobacterium isolated from the sea slug Elysia ornata". Systematic and Applied Microbiology. 30 (3): 202–206. doi:10.1016/j.syapm.2006.07.003. ISSN   0723-2020. PMID   16904280.
  9. Kvennefors, E. Charlotte E.; Sampayo, Eugenia; Ridgway, Tyrone; Barnes, Andrew C.; Hoegh-Guldberg, Ove (2010-04-29). "Bacterial Communities of Two Ubiquitous Great Barrier Reef Corals Reveals Both Site- and Species-Specificity of Common Bacterial Associates". PLOS ONE. 5 (4): e10401. Bibcode:2010PLoSO...510401K. doi: 10.1371/journal.pone.0010401 . ISSN   1932-6203. PMC   2861602 . PMID   20454460.
  10. Appolinario, Luciana R.; Tschoeke, Diogo A.; Rua, Cintia P. J.; Venas, Tainá; Campeão, Mariana E.; Amaral, Gilda R. S.; Leomil, Luciana; de Oliveira, Louisi; Vieira, Verônica Viana; Otsuki, Koko; Swings, Jean (2016). "Description of Endozoicomonas arenosclerae sp. nov. using a genomic taxonomy approach". Antonie van Leeuwenhoek. 109 (3): 431–438. doi:10.1007/s10482-016-0649-x. ISSN   0003-6072. PMID   26786501. S2CID   54567862.
  11. Pike, Rebecca E.; Haltli, Brad; Kerr, Russell G. (2013-11-01). "Description of Endozoicomonas euniceicola sp. nov. and Endozoicomonas gorgoniicola sp. nov., bacteria isolated from the octocorals Eunicea fusca and Plexaura sp., and an emended description of the genus Endozoicomonas". International Journal of Systematic and Evolutionary Microbiology. 63 (Pt_11): 4294–4302. doi:10.1099/ijs.0.051490-0. ISSN   1466-5026. PMID   23832969.
  12. Kyrpides, Nikos C.; Woyke, Tanja; Eisen, Jonathan A.; Garrity, George; Lilburn, Timothy G.; Beck, Brian J.; Whitman, William B.; Hugenholtz, Phil; Klenk, Hans-Peter (2013-12-17). "Genomic Encyclopedia of Type Strains, Phase I: The one thousand microbial genomes (KMG-I) project". Standards in Genomic Sciences. 9 (3): 1278–1284. doi:10.4056/sigs.5068949. ISSN   1944-3277. PMC   4148999 . PMID   25197443.
  13. Schreiber, Lars; Kjeldsen, Kasper U.; Funch, Peter; Jensen, Jeppe; Obst, Matthias; López-Legentil, Susanna; Schramm, Andreas (2016-07-12). "Endozoicomonas Are Specific, Facultative Symbionts of Sea Squirts". Frontiers in Microbiology. 7: 1042. doi: 10.3389/fmicb.2016.01042 . ISSN   1664-302X. PMC   4940369 . PMID   27462299.
  14. "Genus: Endozoicomonas". lpsn.dsmz.de. Retrieved 2021-12-09.
  15. 1 2 Neave, Matthew J.; Michell, Craig T.; Apprill, Amy; Voolstra, Christian R. (2014-08-28). "Whole-Genome Sequences of Three Symbiotic Endozoicomonas Strains". Genome Announcements. 2 (4): e00802–14. doi:10.1128/genomeA.00802-14. PMC   4132622 . PMID   25125646.
  16. 1 2 Ding, Jiun-Yan; Shiu, Jia-Ho; Chen, Wen-Ming; Chiang, Yin-Ru; Tang, Sen-Lin (2016-03-08). "Genomic Insight into the Host–Endosymbiont Relationship of Endozoicomonas montiporae CL-33T with its Coral Host". Frontiers in Microbiology. 7: 251. doi: 10.3389/fmicb.2016.00251 . ISSN   1664-302X. PMC   4781883 . PMID   27014194.
  17. 1 2 3 4 Tandon, Kshitij; Lu, Chih-Ying; Chiang, Pei-Wen; Wada, Naohisa; Yang, Shan-Hua; Chan, Ya-Fan; Chen, Ping-Yun; Chang, Hsiao-Yu; Chiou, Yu-Jing; Chou, Ming-Shean; Chen, Wen-Ming (2020). "Comparative genomics: Dominant coral-bacterium Endozoicomonas acroporae metabolizes dimethylsulfoniopropionate (DMSP)". The ISME Journal. 14 (5): 1290–1303. doi:10.1038/s41396-020-0610-x. ISSN   1751-7370. PMC   7174347 . PMID   32055028.
  18. 1 2 Broadbent, Andrew D.; Jones, Graham B. (2004). "DMS and DMSP in mucus ropes, coral mucus, surface films and sediment pore waters from coral reefs in the Great Barrier Reef". Marine and Freshwater Research. 55 (8): 849. doi:10.1071/mf04114. ISSN   1323-1650.
  19. Alex, Anoop; Antunes, Agostinho (2019). "Comparative Genomics Reveals Metabolic Specificity of Endozoicomonas Isolated from a Marine Sponge and the Genomic Repertoire for Host-Bacteria Symbioses". Microorganisms. 7 (12): 635. doi: 10.3390/microorganisms7120635 . PMC   6955870 . PMID   31801294.
  20. Bartz, Jens-Ole; Blom, Jochen; Busse, Hans-Jürgen; Mvie, Jacques B.; Hardt, Martin; Schubert, Patrick; Wilke, Thomas; Goessmann, Alexander; Wilharm, Gottfried; Bender, Jennifer; Kämpfer, Peter (2018). "Parendozoicomonas haliclonae gen. nov. sp. nov. isolated from a marine sponge of the genus Haliclona and description of the family Endozoicomonadaceae fam. nov. comprising the genera Endozoicomonas , Parendozoicomonas , and Kistimonas". Systematic and Applied Microbiology. 41 (2): 73–84. doi:10.1016/j.syapm.2017.11.004. PMID   29398077.
  21. Camp, Emma F.; Suggett, David J.; Pogoreutz, Claudia; Nitschke, Matthew R.; Houlbreque, Fanny; Hume, Benjamin C. C.; Gardner, Stephanie G.; Zampighi, Marco; Rodolfo-Metalpa, Riccardo; Voolstra, Christian R. (2020-06-01). "Corals exhibit distinct patterns of microbial reorganisation to thrive in an extreme inshore environment". Coral Reefs. 39 (3): 701–716. doi:10.1007/s00338-019-01889-3. hdl: 10754/661435 . ISSN   1432-0975. S2CID   211006020.
  22. Morrow, Kathleen M.; Bourne, David G.; Humphrey, Craig; Botté, Emmanuelle S.; Laffy, Patrick; Zaneveld, Jesse; Uthicke, Sven; Fabricius, Katharina E.; Webster, Nicole S. (2015). "Natural volcanic CO2 seeps reveal future trajectories for host–microbial associations in corals and sponges". The ISME Journal. 9 (4): 894–908. doi:10.1038/ismej.2014.188. ISSN   1751-7370. PMC   4817704 . PMID   25325380.
  23. Shiu, Jia-Ho; Yu, Sheng-Ping; Fong, Chia-Ling; Ding, Jiun-Yan; Tan, Chih-Jui; Fan, Tung-Yung; Lu, Chih-Ying; Tang, Sen-Lin (2020). "Shifting in the Dominant Bacterial Group Endozoicomonas Is Independent of the Dissociation With Coral Symbiont Algae". Frontiers in Microbiology. 11: 1791. doi: 10.3389/fmicb.2020.01791 . ISSN   1664-302X. PMC   7412130 . PMID   32849407.
  24. Katharios, Pantelis; Seth-Smith, Helena M. B.; Fehr, Alexander; Mateos, José M.; Qi, Weihong; Richter, Denis; Nufer, Lisbeth; Ruetten, Maja; Guevara Soto, Maricruz; Ziegler, Urs; Thomson, Nicholas R. (2015-12-07). "Environmental marine pathogen isolation using mesocosm culture of sharpsnout seabream: striking genomic and morphological features of novel Endozoicomonas sp". Scientific Reports. 5 (1): 17609. Bibcode:2015NatSR...517609K. doi:10.1038/srep17609. ISSN   2045-2322. PMC   4671022 . PMID   26639610.
  25. Qi, Weihong; Cascarano, Maria Chiara; Schlapbach, Ralph; Katharios, Pantelis; Vaughan, Lloyd; Seth-Smith, Helena M. B. (2018-06-01). "Ca. Endozoicomonas cretensis: A Novel Fish Pathogen Characterized by Genome Plasticity". Genome Biology and Evolution. 10 (6): 1363–1374. doi:10.1093/gbe/evy092. ISSN   1759-6653. PMC   6007542 . PMID   29726925.

Further reading