Enterocin

Last updated
Enterocin
Enterocin.png
Names
IUPAC name
(10S)-2-benzoyl-1,3,8,10-tetrahydroxy-9-(4-methoxy-6-oxopyran-2-yl)-5-oxatricyclo[4.3.1.03,8]decan-4-one
Other names
Vulgamycin
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/C22H20O10/c1-30-11-7-12(31-14(23)8-11)16-20(27)9-13-18(25)21(16,28)17(22(20,29)19(26)32-13)15(24)10-5-3-2-4-6-10/h2-8,13,16-18,25,27-29H,9H2,1H3/t13?,16?,17?,18-,20?,21?,22?/m0/s1
    Key: CTBBEXWJRAPJIZ-LXJDDUSDSA-N
  • COC1=CC(=O)OC(=C1)C2C3(CC4C(C2(C(C3(C(=O)O4)O)C(=O)C5=CC=CC=C5)O)O)O
Properties
C22H20O10
Molar mass 444.392 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Enterocin and its derivatives are bacteriocins synthesized by the lactic acid bacteria, Enterococcus . This class of polyketide antibiotics are effective against foodborne pathogens including L. monocytogenes, Listeria, and Bacillus. [1] Due to its proteolytic degradability in the gastrointestinal tract, enterocin is used for controlling foodborne pathogens via human consumption. [2]

Contents

History

Enterocin was discovered from soil and marine Streptomyces [3] strains as well as from marine ascidians of Didemnum [4] and it has also been found in a mangrove strains Streptomyces qinglanensis and Salinispora pacifica . [5]

Total synthesis

The total synthesis of enterocin has been reported. [6]

Biosynthesis

Enterocin has a caged, tricyclic, nonaromatic core and its formation undergoes a flavoenzyme (EncM) catalyzed Favorskii-like rearrangement of a poly(beta-carbonyl). [7] Studies done on enterocin have shown that it is biosynthesized from a type II polyketide synthase (PKS) pathway, starting with a structure derived from phenylalanine or activation of benzoic acid followed by the EncM catalyzed rearrangement.

Proposed biosynthetic pathway of enterocin. Enterocin biosynthesis.png
Proposed biosynthetic pathway of enterocin.

The enzyme EncN catalyzes the ATP-dependent transfer of the benzoate to EncC, the acyl carrier protein. EncC transfers the aromatic unit to EncA-EncB, the ketosynthase in order for malonation via FabD, the malonyl-CoA:ACP transacylase. A Claisen condensation occurs between the benzoyl and malonyl groups and occurs six more times followed by reaction with EncD, a ketoreductase; the intermediate undergoes the EncM catalyzed oxidative rearrangement to form the enterocin tricyclic core. Further reaction with O-methyltransferase, EncK and cytochrome P450 hydroxylase, EncR yields enterocin. [9]

Related Research Articles

<span class="mw-page-title-main">Oxytetracycline</span> Antibiotic

Oxytetracycline is a broad-spectrum tetracycline antibiotic, the second of the group to be discovered.

<span class="mw-page-title-main">Bleomycin</span> Glycopeptide antibiotic used to treat various cancers

Bleomycin is a medication used to treat cancer. This includes Hodgkin's lymphoma, non-Hodgkin's lymphoma, testicular cancer, ovarian cancer, and cervical cancer among others. Typically used with other cancer medications, it can be given intravenously, by injection into a muscle or under the skin. It may also be administered inside the chest to help prevent the recurrence of a fluid around the lung due to cancer; however talc is better for this.

<span class="mw-page-title-main">Cyclopiazonic acid</span> Chemical compound

Cyclopiazonic acid (α-CPA), a mycotoxin and a fungal neurotoxin, is made by the molds Aspergillus and Penicillium. It is an indole-tetramic acid that serves as a toxin due to its ability to inhibit calcium-dependent ATPases found in the endoplasmic and sarcoplasmic reticulum. This inhibition disrupts the muscle contraction-relaxation cycle and the calcium gradient that is maintained for proper cellular activity in cells.

<span class="mw-page-title-main">Biosynthesis of doxorubicin</span>

Doxorubicin (DXR) is a 14-hydroxylated version of daunorubicin, the immediate precursor of DXR in its biosynthetic pathway. Daunorubicin is more abundantly found as a natural product because it is produced by a number of different wild type strains of streptomyces. In contrast, only one known non-wild type species, streptomyces peucetius subspecies caesius ATCC 27952, was initially found to be capable of producing the more widely used doxorubicin. This strain was created by Arcamone et al. in 1969 by mutating a strain producing daunorubicin, but not DXR, at least in detectable quantities. Subsequently, Hutchinson's group showed that under special environmental conditions, or by the introduction of genetic modifications, other strains of streptomyces can produce doxorubicin. His group has also cloned many of the genes required for DXR production, although not all of them have been fully characterized. In 1996, Strohl's group discovered, isolated and characterized dox A, the gene encoding the enzyme that converts daunorubicin into DXR. By 1999, they produced recombinant Dox A, a Cytochrome P450 oxidase, and found that it catalyzes multiple steps in DXR biosynthesis, including steps leading to daunorubicin. This was significant because it became clear that all daunorubicin producing strains have the necessary genes to produce DXR, the much more therapeutically important of the two. Hutchinson's group went on to develop methods to improve the yield of DXR, from the fermentation process used in its commercial production, not only by introducing Dox A encoding plasmids, but also by introducing mutations to deactivate enzymes that shunt DXR precursors to less useful products, for example baumycin-like glycosides. Some triple mutants, that also over-expressed Dox A, were able to double the yield of DXR. This is of more than academic interest because at that time DXR cost about $1.37 million per kg and current production in 1999 was 225 kg per annum. More efficient production techniques have brought the price down to $1.1 million per kg for the non-liposomal formulation. Although DXR can be produced semi-synthetically from daunorubicin, the process involves electrophilic bromination and multiple steps and the yield is poor. Since daunorubicin is produced by fermentation, it would be ideal if the bacteria could complete DXR synthesis more effectively.

In enzymology, an erythronolide synthase is an enzyme that catalyzes the chemical reaction

Streptogramin A is a group of antibiotics within the larger family of antibiotics known as streptogramins. They are synthesized by the bacteria Streptomyces virginiae. The streptogramin family of antibiotics consists of two distinct groups: group A antibiotics contain a 23-membered unsaturated ring with lactone and peptide bonds while group B antibiotics are depsipeptides. While structurally different, these two groups of antibiotics act synergistically, providing greater antibiotic activity than the combined activity of the separate components. These antibiotics have until recently been commercially manufactured as feed additives in agriculture, although today there is increased interest in their ability to combat antibiotic-resistant bacteria, particularly vancomycin-resistant bacteria.

<span class="mw-page-title-main">Pikromycin</span> Chemical compound

Pikromycin was studied by Brokmann and Hekel in 1951 and was the first antibiotic macrolide to be isolated. Pikromycin is synthesized through a type I polyketide synthase system in Streptomyces venezuelae, a species of Gram-positive bacterium in the genus Streptomyces. Pikromycin is derived from narbonolide, a 14-membered ring macrolide. Along with the narbonolide backbone, pikromycin includes a desosamine sugar and a hydroxyl group. Although Pikromycin is not a clinically useful antibiotic, it can be used as a raw material to synthesize antibiotic ketolide compounds such as ertythromycins and new epothilones.

<span class="mw-page-title-main">Codinaeopsin</span> Chemical compound

Codinaeopsin is an antimalarial isolated from a fungal isolate found in white yemeri trees (Vochysia guatemalensis) in Costa Rica. It is reported to have bioactivity against Plasmodium falciparum with an IC50 = 2.3 μg/mL (4.7 μM). Pure codinaeopsin was reported to be isolated with a total yield of 18 mg/mL from cultured fungus. The biosynthesis of codinaeopsin involves a polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) hybrid.

<span class="mw-page-title-main">Anthracimycin</span> Polyketide

Anthracimycin is a polyketide antibiotic discovered in 2013. Anthracimycin is derived from marine actinobacteria. In preliminary laboratory research, it has shown activity against Bacillus anthracis, the bacteria that causes anthrax, and against methicillin-resistant Staphylococcus aureus (MRSA).

<span class="mw-page-title-main">Marinone</span> Chemical compound

Marinone is an antibiotic made by marine actinomycetes.

Streptomyces isolates have yielded the majority of human, animal, and agricultural antibiotics, as well as a number of fundamental chemotherapy medicines. Streptomyces is the largest antibiotic-producing genus of Actinomycetota, producing chemotherapy, antibacterial, antifungal, antiparasitic drugs, and immunosuppressants. Streptomyces isolates are typically initiated with the aerial hyphal formation from the mycelium.

Fostriecin is a type I polyketide synthase (PKS) derived natural product, originally isolated from the soil bacterium Streptomyces pulveraceus. It belongs to a class of natural products which characteristically contain a phosphate ester, an α,β-unsaturated lactam and a conjugated linear diene or triene chain produced by Streptomyces. This class includes structurally related compounds cytostatin and phoslactomycin. Fostriecin is a known potent and selective inhibitor of protein serine/threonine phosphatases, as well as DNA topoisomerase II. Due to its activity against protein phosphatases PP2A and PP4 which play a vital role in cell growth, cell division, and signal transduction, fostriecin was looked into for its antitumor activity in vivo and showed in vitro activity against leukemia, lung cancer, breast cancer, and ovarian cancer. This activity is thought to be due to PP2A's assumed role in regulating apoptosis of cells by activating cytotoxic T-lymphocytes and natural killer cells involved in tumor surveillance, along with human immunodeficiency virus-1 (HIV-1) transcription and replication.

<span class="mw-page-title-main">Borrelidin</span> Chemical compound

Borrelidin is an 18-membered polyketide macrolide derived from several Streptomyces species. First discovered in 1949 from Streptomyces rochei, Borrelidin shows antibacterial activity by acting as an inhibitor of threonyl-tRNA synthetase and features a nitrile moiety, a unique functionality in natural products., Borrelidin also exhibits potent angiogenesis inhibition, which was shown in a rat aorta matrix model. Other studies have been performed to show that low concentrations of borrelidin can suppress growth and induce apoptosis in malignant acute lymphoblastic leukemia cells. Borredlidin's antimalarial activity has also been shown in vitro and in vivo.

<span class="mw-page-title-main">Pyoluteorin</span>

Pyoluteorin is a natural antibiotic that is biosynthesized from a hybrid nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) pathway. Pyoluteorin was first isolated in the 1950s from Pseudomonas aeruginosa strains T359 and IFO 3455 and was found to be toxic against oomycetes, bacteria, fungi, and against certain plants. Pyoluteorin is most notable for its toxicity against the oomycete Pythium ultimum, which is a plant pathogen that causes a global loss in agriculture. Currently, pyoluteorin derivatives are being studied as an Mcl-1 antagonist in order to target cancers that have elevated Mcl-1 levels.

<span class="mw-page-title-main">Annimycin</span> Polyenoic acid amide natural product produced by Streptomyces calvus

Annimycin (4-(Z)-annimycin) is a polyenoic acid amide natural product produced by Streptomyces calvus. Annimycin inhibits the sporulation of several actinobacterial genera.

<span class="mw-page-title-main">Dihydromaltophilin</span> Chemical compound

Dihydromaltophilin, or heat stable anti-fungal factor (HSAF), is a secondary metabolite of Streptomyces sp. and Lysobacter enzymogenes. HSAF is a polycyclic tetramate lactam containing a single tetramic acid unit and a 5,5,6-tricyclic system. HSAF has been shown to have anti-fungal activity mediated through the disruption of the biosynthesis of Sphingolipid's by targeting a ceramide synthase unique to fungi.

Tylactone synthase or TYLS is a Type 1 polyketide synthase. TYLS is found in strains of Streptomyces fradiae and responsible for the synthesis of the macrolide ring, tylactone, the precursor of an antibiotic, tylosin. TYLS is composed of five large multi-functional proteins, TylGI-V. Each protein contains either one or two modules. Each module consists of a minimum of a Ketosynthase (KS), an Acyltransferase (AT), and an Acyl carrier protein (ACP) but may also contain a Ketoreductase (KR), Dehydrotase (DH), and Enoyl Reductase (ER) for additional reduction reactions. The domains of TYLS have similar activity domains to those found in other Type I polyketide synthase such as 6-Deoxyerythronolide B synthase (DEBS). The TYLS system also contains a loading module consisting of a ketosynthase‐like decarboxylase domain, an acyltransferase, and acyl carrier protein. The terminal Thioesterase terminates tylactone synthesis by cyclizing the macrolide ring. After the TYLS completes tylactone synthesis, the tylactone molecule is modified by oxidation at C-20 and C-23 and glycosylation of mycaminose, mycinose, and mycarose to produce tylosin.

<span class="mw-page-title-main">Aureothin</span> Chemical compound

Aureothin is a natural product of a cytotoxic shikimate-polyketide antibiotic with the molecular formula C22H23NO6. Aureothin is produced by the bacterium Streptomyces thioluteus that illustrates antitumor, antifungal, and insecticidal activities and the new aureothin derivatives can be antifungal and antiproliferative. In addition, aureothin, a nitro compound from Streptomyces thioluteus, was indicated to have pesticidal activity against the bean weevil by interfering with mitochondrial respiratory complex II.

<span class="mw-page-title-main">Prescopranone</span> Chemical compound

Prescopranone is a key intermediate in the biosynthesis of scopranones. Prescopranone is the precursor to scopranone A, scopranone B, and scopranone C, which are produced by Streptomyces sp. BYK-11038.

Andrimid is an antibiotic natural product that is produced by the marine bacterium Vibrio coralliilyticus. Andrimid is an inhibitor of fatty acid biosynthesis by blocking the carboxyl transfer reaction of acetyl-CoA carboxylase (ACC).

References

  1. Khan H, Flint S, Yu PL (June 2010). "Enterocins in food preservation". International Journal of Food Microbiology. 141 (1–2): 1–10. doi:10.1016/j.ijfoodmicro.2010.03.005. PMID   20399522.
  2. Singh A, Walia D, Batra N (2018-01-01). "Fresh-Cut Fruits: Microbial Degradation and Preservation". Microbial Contamination and Food Degradation. pp. 149–176. doi:10.1016/B978-0-12-811515-2.00006-8. ISBN   978-0-12-811515-2.
  3. Miyairi N, Sakai H, Konomi T, Imanaka H (March 1976). "Enterocin, a new antibiotic taxonomy, isolation and characterization". The Journal of Antibiotics. 29 (3): 227–35. doi: 10.7164/antibiotics.29.227 . PMID   770404.
  4. Kang H, Jensen PR, Fenical W (1996). "Isolation of Microbial Antibiotics from a Marine Ascidian of the GenusDidemnum". The Journal of Organic Chemistry. 61 (4): 1543–1546. doi:10.1021/jo951794g. ISSN   0022-3263.
  5. Bonet B, Teufel R, Crüsemann M, Ziemert N, Moore BS (March 2015). "Direct capture and heterologous expression of Salinispora natural product genes for the biosynthesis of enterocin". Journal of Natural Products. 78 (3): 539–42. doi:10.1021/np500664q. PMC   4380194 . PMID   25382643.
  6. Rizzo A, Trauner D (April 2018). "Toward (-)-Enterocin: An Improved Cuprate Barbier Protocol To Overcome Strain and Sterical Hindrance". Organic Letters. 20 (7): 1841–1844. doi:10.1021/acs.orglett.8b00353. PMID   29553746.
  7. Teufel R, Miyanaga A, Michaudel Q, Stull F, Louie G, Noel JP, et al. (November 2013). "Flavin-mediated dual oxidation controls an enzymatic Favorskii-type rearrangement". Nature. 503 (7477): 552–556. Bibcode:2013Natur.503..552T. doi:10.1038/nature12643. PMC   3844076 . PMID   24162851.
  8. Rohr J, Hertweck C (2010-01-01). "Type II PKS". In Liu HW, Mander L (eds.). Comprehensive Natural Products II. pp. 227–303. doi:10.1016/B978-008045382-8.00703-6. ISBN   9780080453828.
  9. Kalaitzis JA, Cheng Q, Thomas PM, Kelleher NL, Moore BS (March 2009). "In vitro biosynthesis of unnatural enterocin and wailupemycin polyketides". Journal of Natural Products. 72 (3): 469–72. doi:10.1021/np800598t. PMC   2765504 . PMID   19215142.