Environmental gradient

Last updated

An environmental gradient, or climate gradient, is a change in abiotic (non-living) factors through space (or time). Environmental gradients can be related to factors such as altitude, depth, temperature, soil humidity and precipitation. Often times, a multitude of biotic (living) factors are closely related to these gradients; as a result of a change in an environmental gradient, factors such as species abundance, population density, morphology, primary productivity, predation, and local adaptation may be impacted. [1]

Contents

Variations in average annual precipitation across a defined range (here, Africa) can constitute an environmental gradient. Africa Precipitation Map.svg
Variations in average annual precipitation across a defined range (here, Africa) can constitute an environmental gradient.

Abiotic influence

The species distribution along environmental gradients has been studied intensively due to large databases of species presence data (e.g. GBIF). The abiotic factors that environmental gradients consist of can have a direct ramifications on organismal survival. Generally, organismal distribution is tied to those abiotic factors, but even an environmental gradient of one abiotic factor yields insight into how a species distribution might look. For example, aspects of the landscape such as soil composition, temperature, and precipitation all factor in to an accurate idea of habitable territory a plant species might occupy; information on one of those factors can help form an environmental gradient by which a proximate species distribution may be generated. [2] Similarly, along the upstream-downstream gradient of a river, fish assemblages (groupings) can vary in species and trait diversity; upstream habitats, which tend to be at higher elevations, have been observed to develop greater species and trait diversity. With elevated regions most intensely feeling the effects of climate change and these effects being linked to increased species diversity in impacted regions, this is a key consideration in prioritizing habitats for conservation efforts. [3] At an ecotone, species abundances change relatively quickly compared to the environmental gradient.

Biotic interactions

Although environmental gradients are comprised gradually changing and predictable patterns of an abiotic factor, there is strong interplay between both biotic-biotic factors as well as biotic-abiotic factors. For example, species abundance usually changez along environmental gradients in a more or less predictable way. However, the species abundance along an environmental gradient is not only determined by the abiotic factor associated with the gradient but, also by the change in the biotic interactions, like competition and predation, along the environmental gradient. [4] [5]

Local adaptation along environmental gradients

Depending on the size of the landscape and the gene flow between populations, local adaptation could arise between populations inhabiting two extremes of the landscape. The opposing extremes in abiotic conditions that are faced between populations and the lack of homogenizing gene flow could present conditions where two populations are able to differentiate. [6] Often times when comparing fitness or phenotypic values across an environmental gradient, the data are fixated into a reaction norm framework. In this way, an individual can directly assess the changes across a landscape of a particular species' phenotype or compare fitness and phenotypes of populations within a species across environmental gradients (particularly when performing reciprocal transplant studies).

Impact of climate change

Current[ when? ] models predict that as climate change intensifies, certain environmental gradients may experience the effects as changing rates of natural processes or impacts on distribution and characteristics of species within them. [7] [8] [9] Given the interconnectedness of abiotic factors, long-term disturbances of one gradient have the possibility of affecting other gradients.

Soil characteristics

Soil respiration, the process of soil naturally releasing carbon dioxide into the atmosphere, acts as an example of this. In areas where soil moisture is not limiting (with moisture being a key part of the respiration process), soil respiration increases with rising temperatures; thus, respiration patterns form the gradient, and higher emissions are observed in warmer ecosystems. Similarly, rate of precipitation has a positive correlation with respiration (as moisture no longer becomes a limiting factor). Thus, it not only is its own gradient (average precipitation across a range), but also connects with the respiration gradient and impacts it. [10]

Altitude

Altitude gradients are a key consideration in understanding migration patterns due to the effects of global warming. As temperatures increase, trees adapted to warmer climates will migrate uphill for access to sunlight, and thus populations of temperate or cold-adapted trees and the habitats suitable for them will shrink. [11]

Environmental gradients in society

The distribution of radiation traveling outward from the site of the Fukushima Daiichi nuclear disaster formed a man-made environmental gradient on the Honshu island of Japan. Fukushima radiation dose map 2011-04-29.png
The distribution of radiation traveling outward from the site of the Fukushima Daiichi nuclear disaster formed a man-made environmental gradient on the Honshu island of Japan.

Environmental gradients are not limited to naturally occurring variations in environmental factors across a range; they have also been created by human activity and industrialization. Air pollution is present as an environmental gradient in areas containing power plants, factories, and other pollutant-emitting facilities, as are environmental toxins, such as heavy metals, radiation, and pesticides; generally speaking, concentration decreases as distance from origin site increases. [12] [13] [14] Differences in exposure to these elements across populations due to proximity to the origin site has become a major concern of environmental and public health activists, who cite health disparities linked to these gradients as an environmental justice concern. [15] [16]

See also

Related Research Articles

Abiotic stress is the negative impact of non-living factors on the living organisms in a specific environment. The non-living variable must influence the environment beyond its normal range of variation to adversely affect the population performance or individual physiology of the organism in a significant way.

<span class="mw-page-title-main">Biome</span> Community of organisms associated with an environment

A biome is a biogeographical unit consisting of a biological community that has formed in response to the physical environment in which they are found and a shared regional climate. Biomes may span more than one continent. Biome is a broader term than habitat and can comprise a variety of habitats.

<span class="mw-page-title-main">Ecosystem</span> Community of living organisms together with the nonliving components of their environment

An ecosystem consists of all the organisms and the physical environment with which they interact. These biotic and abiotic components are linked together through nutrient cycles and energy flows. Energy enters the system through photosynthesis and is incorporated into plant tissue. By feeding on plants and on one another, animals play an important role in the movement of matter and energy through the system. They also influence the quantity of plant and microbial biomass present. By breaking down dead organic matter, decomposers release carbon back to the atmosphere and facilitate nutrient cycling by converting nutrients stored in dead biomass back to a form that can be readily used by plants and microbes.

<span class="mw-page-title-main">Ecological niche</span> Fit of a species living under specific environmental conditions

In ecology, a niche is the match of a species to a specific environmental condition. It describes how an organism or population responds to the distribution of resources and competitors and how it in turn alters those same factors. "The type and number of variables comprising the dimensions of an environmental niche vary from one species to another [and] the relative importance of particular environmental variables for a species may vary according to the geographic and biotic contexts".

<span class="mw-page-title-main">Edge effects</span> Ecological concept

In ecology, edge effects are changes in population or community structures that occur at the boundary of two or more habitats. Areas with small habitat fragments exhibit especially pronounced edge effects that may extend throughout the range. As the edge effects increase, the boundary habitat allows for greater biodiversity.

Ecological classification or ecological typology is the classification of land or water into geographical units that represent variation in one or more ecological features. Traditional approaches focus on geology, topography, biogeography, soils, vegetation, climate conditions, living species, habitats, water resources, and sometimes also anthropic factors. Most approaches pursue the cartographical delineation or regionalisation of distinct areas for mapping and planning.

Freshwater ecosystems are a subset of Earth's aquatic ecosystems. They include lakes, ponds, rivers, streams, springs, bogs, and wetlands. They can be contrasted with marine ecosystems, which have a larger salt content. Freshwater habitats can be classified by different factors, including temperature, light penetration, nutrients, and vegetation. There are three basic types of freshwater ecosystems: Lentic, lotic and wetlands. Freshwater ecosystems contain 41% of the world's known fish species.

<span class="mw-page-title-main">Latitudinal gradients in species diversity</span> Global increase in species richness from polar regions to tropics

Species richness, or biodiversity, increases from the poles to the tropics for a wide variety of terrestrial and marine organisms, often referred to as the latitudinal diversity gradient. The latitudinal diversity gradient is one of the most widely recognized patterns in ecology. It has been observed to varying degrees in Earth's past. A parallel trend has been found with elevation, though this is less well-studied.

Soil ecology is the study of the interactions among soil organisms, and between biotic and abiotic aspects of the soil environment. It is particularly concerned with the cycling of nutrients, formation and stabilization of the pore structure, the spread and vitality of pathogens, and the biodiversity of this rich biological community.

<span class="mw-page-title-main">Species distribution</span> Geographical area in which a species can be found

Species distribution, or speciesdispersion, is the manner in which a biological taxon is spatially arranged. The geographic limits of a particular taxon's distribution is its range, often represented as shaded areas on a map. Patterns of distribution change depending on the scale at which they are viewed, from the arrangement of individuals within a small family unit, to patterns within a population, or the distribution of the entire species as a whole (range). Species distribution is not to be confused with dispersal, which is the movement of individuals away from their region of origin or from a population center of high density.

<span class="mw-page-title-main">Community (ecology)</span> Associated populations of species in a given area

In ecology, a community is a group or association of populations of two or more different species occupying the same geographical area at the same time, also known as a biocoenosis, biotic community, biological community, ecological community, or life assemblage. The term community has a variety of uses. In its simplest form it refers to groups of organisms in a specific place or time, for example, "the fish community of Lake Ontario before industrialization".

Altitudinal zonation in mountainous regions describes the natural layering of ecosystems that occurs at distinct elevations due to varying environmental conditions. Temperature, humidity, soil composition, and solar radiation are important factors in determining altitudinal zones, which consequently support different vegetation and animal species. Altitudinal zonation was first hypothesized by geographer Alexander von Humboldt who noticed that temperature drops with increasing elevation. Zonation also occurs in intertidal and marine environments, as well as on shorelines and in wetlands. Scientist C. Hart Merriam observed that changes in vegetation and animals in altitudinal zones map onto changes expected with increased latitude in his concept of life zones. Today, altitudinal zonation represents a core concept in mountain research.

<span class="mw-page-title-main">Barren vegetation</span> Area of land where plant growth may be limited

Barren vegetation describes an area of land where plant growth may be sparse, stunted, and/or contain limited biodiversity. Environmental conditions such as toxic or infertile soil, high winds, coastal salt-spray, and climatic conditions are often key factors in poor plant growth and development. Barren vegetation can be categorized depending on the climate, geology, and geographic location of a specific area.

Ecological forecasting uses knowledge of physics, ecology and physiology to predict how ecological populations, communities, or ecosystems will change in the future in response to environmental factors such as climate change. The goal of the approach is to provide natural resource managers with information to anticipate and respond to short and long-term climate conditions.

<span class="mw-page-title-main">Effects of climate change on plant biodiversity</span>

The history of life on Earth is closely associated with environmental change on multiple spatial and temporal scales. Climate change is a long-term change in the average weather patterns that have come to define Earth’s local, regional and global climates. These changes have a broad range of observed effects that are synonymous with the term. Climate change is any significant long term change in the expected pattern, whether due to natural variability or as a result of human activity. Predicting the effects that climate change will have on plant biodiversity can be achieved using various models, however bioclimatic models are most commonly used.

<span class="mw-page-title-main">Species distribution modelling</span> Algorithmic prediction of the distribution of a species across geographic space

Species distribution modelling (SDM), also known as environmental(or ecological) niche modelling (ENM), habitat modelling, predictive habitat distribution modelling, and range mapping uses computer algorithms to predict the distribution of a species across geographic space and time using environmental data. The environmental data are most often climate data (e.g. temperature, precipitation), but can include other variables such as soil type, water depth, and land cover. SDMs are used in several research areas in conservation biology, ecology and evolution. These models can be used to understand how environmental conditions influence the occurrence or abundance of a species, and for predictive purposes (ecological forecasting). Predictions from an SDM may be of a species’ future distribution under climate change, a species’ past distribution in order to assess evolutionary relationships, or the potential future distribution of an invasive species. Predictions of current and/or future habitat suitability can be useful for management applications (e.g. reintroduction or translocation of vulnerable species, reserve placement in anticipation of climate change).

The geographical limits to the distribution of a species are determined by biotic or abiotic factors. Core populations are those occurring within the centre of the range, and marginal populations are found at the boundary of the range.

<span class="mw-page-title-main">Root microbiome</span>

The root microbiome is the dynamic community of microorganisms associated with plant roots. Because they are rich in a variety of carbon compounds, plant roots provide unique environments for a diverse assemblage of soil microorganisms, including bacteria, fungi and archaea. The microbial communities inside the root and in the rhizosphere are distinct from each other, and from the microbial communities of bulk soil, although there is some overlap in species composition.

Phoebe L. Zarnetske is a community ecologist and associate professor at Michigan State University. Her work focuses on the ecological and evolutionary mechanisms that shape natural communities across multiple spatial scales.

<span class="mw-page-title-main">Climate change and invasive species</span>

Climate change and invasive species refers to the process of the environmental destabilization caused by climate change. This environmental change facilitates the spread of invasive species — species that are not historically found in a certain region, and often bring about a negative impact to that region's native species.

References

  1. Floret, C.; Galan, M. J.; LeFloc'h, E.; Orshan, G.; Romane, F. (1990). "Growth forms and phenomorphology traits along an environmental gradient: tools for studying vegetation?". Journal of Vegetation Science. 1 (1): 71–80. doi:10.2307/3236055. ISSN   1654-1103. JSTOR   3236055.
  2. Kirkman, L. K.; Mitchell, R. J.; Helton, R. C.; Drew, M. B. (November 2001). "Productivity and species richness across an environmental gradient in a fire-dependent ecosystem". American Journal of Botany. 88 (11): 2119–2128. doi: 10.2307/3558437 . ISSN   0002-9122. JSTOR   3558437. PMID   21669643.
  3. Buisson, Laëtitia; Grenouillet, Gaël (2009). "Contrasted impacts of climate change on stream fish assemblages along an environmental gradient". Diversity and Distributions. 15 (4): 613–626. doi: 10.1111/j.1472-4642.2009.00565.x . S2CID   86026682.
  4. Rydgren, Knut; Økland, Rune Halvorsen; Økland, Tonje (2003). "Species response curves along environmental gradients. A case study from SE Norwegian swamp forests". Journal of Vegetation Science. 14 (6): 869–880. doi:10.1111/j.1654-1103.2003.tb02220.x. ISSN   1654-1103.
  5. Werner, Earl E.; McPeek, Mark A. (1994). "Direct and Indirect Effects of Predators on Two Anuran Species along an Environmental Gradient". Ecology. 75 (5): 1368–1382. doi:10.2307/1937461. ISSN   0012-9658. JSTOR   1937461.
  6. Hereford, Joe; Winn, Alice A. (2008). "Limits to local adaptation in six populations of the annual plant Diodia teres". The New Phytologist. 178 (4): 888–896. doi:10.1111/j.1469-8137.2008.02405.x. ISSN   1469-8137. PMID   18384510.
  7. Pardi, Melissa I.; Graham, Russell W. (2019). "Changes in small mammal communities throughout the late Quaternary across eastern environmental gradients of the United States". Quaternary International. 530–531: 80–87. Bibcode:2019QuInt.530...80P. doi:10.1016/j.quaint.2018.05.041. S2CID   134434800.
  8. Wehn, Sølvi; Lundemo, Sverre; Holten, Jarle I. (2014). "Alpine vegetation along multiple environmental gradients and possible consequences of climate change". Alpine Botany. 124 (2): 155–164. doi: 10.1007/s00035-014-0136-9 . ISSN   1664-2201. S2CID   16764321.
  9. Henry, P.; Russello, M. A. (2013). "Adaptive divergence along environmental gradients in a climate‐change‐sensitive mammal". Ecology and Evolution. 3 (11): 3906–3917. doi:10.1002/ece3.776. ISSN   2045-7758. PMC   3810883 . PMID   24198948.
  10. Reynolds, Lorien L.; Johnson, Bart R.; Pfeifer‐Meister, Laurel; Bridgham, Scott D. (2015). "Soil respiration response to climate change in Pacific Northwest prairies is mediated by a regional Mediterranean climate gradient". Global Change Biology. 21 (1): 487–500. Bibcode:2015GCBio..21..487R. doi:10.1111/gcb.12732. ISSN   1354-1013. PMID   25205511. S2CID   205142081.
  11. Ruiz-Labourdette, Diego; Nogués-Bravo, David; Ollero, Helios Sáinz; Schmitz, María F.; Pineda, Francisco D. (2012). "Forest composition in Mediterranean mountains is projected to shift along the entire elevational gradient under climate change: Forest dynamics under climate change". Journal of Biogeography. 39 (1): 162–176. doi:10.1111/j.1365-2699.2011.02592.x. S2CID   82037043.
  12. Semenova, Yuliya; Pivina, Lyudmila; Zhunussov, Yersin; Zhanaspayev, Marat; Chirumbolo, Salvatore; Muzdubayeva, Zhanna; Bjørklund, Geir (2020). "Radiation-related health hazards to uranium miners". Environmental Science and Pollution Research. 27 (28): 34808–34822. doi:10.1007/s11356-020-09590-7. ISSN   0944-1344. PMID   32638305. S2CID   220398252.
  13. Tsai, Wen-Tien (2005). "An overview of environmental hazards and exposure risk of hydrofluorocarbons (HFCs)". Chemosphere. 61 (11): 1539–1547. Bibcode:2005Chmsp..61.1539T. doi:10.1016/j.chemosphere.2005.03.084. PMID   15936055.
  14. Ameh, Thelma; Sayes, Christie M. (2019). "The potential exposure and hazards of copper nanoparticles: A review". Environmental Toxicology and Pharmacology. 71: 103220. doi:10.1016/j.etap.2019.103220. PMID   31306862. S2CID   196810894.
  15. Evans, Gary W.; Kantrowitz, Elyse (2002). "Socioeconomic Status and Health: The Potential Role of Environmental Risk Exposure". Annual Review of Public Health. 23 (1): 303–331. doi: 10.1146/annurev.publhealth.23.112001.112349 . ISSN   0163-7525. PMID   11910065.
  16. Lauriola, Paolo; Crabbe, Helen; Behbod, Behrooz; Yip, Fuyuen; Medina, Sylvia; Semenza, Jan C.; Vardoulakis, Sotiris; Kass, Dan; Zeka, Ariana; Khonelidze, Irma; Ashworth, Matthew (2020-03-17). "Advancing Global Health through Environmental and Public Health Tracking". International Journal of Environmental Research and Public Health. 17 (6): 1976. doi: 10.3390/ijerph17061976 . ISSN   1660-4601. PMC   7142667 . PMID   32192215.