Euthycarcinoidea

Last updated

Euthycarcinoidea
Temporal range: Cambrian–Middle Triassic
Apankura.png
Life restoration of Apankura
Sottyxerxes.png
Life restoration of Sottyxerxes
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Clade: Mandibulata
Subclass: Euthycarcinoidea
Gall & Grauvogel, 1964
Order: Euthycarcinida
Gall & Grauvogel, 1964
Genera

See text

Euthycarcinoidea are an enigmatic group of extinct, possibly amphibious arthropods that ranged from Cambrian to Triassic times. Fossils are known from Europe, North America, Argentina, Australia, and Antarctica.

Contents

Description

The euthycarcinoid body was divided into a cephalon (head), preabdomen, and postabdomen. The cephalon consisted of two segments and included mandibles, antennae and presumed eyes. The preabdomen consisted of five to fourteen tergites, each having up to three somites. Each somite had in turn a pair of uniramous, segmented legs. The postabdomen was limbless and consisted of up to six segments and a terminal tail spine. [1]

Affinities

Due to its particular combination of characteristics, the position of the Euthycarcinoidea within the Arthropoda has been ambiguous; previous authors have allied euthycarcinoids with crustaceans (interpreted as copepods, branchiopods, or an independent group), with trilobites, or the merostomatans (horseshoe crabs and sea scorpions, now an obsolete group [2] ). [3] However, due to the general features and the discovery of fossils from this group in Cambrian rocks, a 2010 study suggested that they may have given rise to the mandibulates, the group that includes the myriapods (centipedes, millipedes and the like), crustaceans, and hexapods (insects, etc.). [4]

However, a 2020 study identified several characters, including compound eyes and various details of the preoral chamber, that suggested instead a position as the closest relatives of living myriapods. [5] This would help to close the gap between the earliest body fossils of crown-group myriapods in the Silurian and molecular clock data suggesting a divergence from their closest relatives during the Ediacaran or Cambrian. [1] This had already been suggested by the cladogram of a previous study. [6]

The Cambrian euthycarcinoid Mosineia macnaughtoni from the Elk Mound Group, Blackberry Hill, central Wisconsin. Cambrian euthycarcinoids such as this one may have been the first animals to walk and survive on land. Mosineia macnaughtoni.jpg
The Cambrian euthycarcinoid Mosineia macnaughtoni from the Elk Mound Group, Blackberry Hill, central Wisconsin. Cambrian euthycarcinoids such as this one may have been the first animals to walk and survive on land.

Environment and life habits

Euthycarcinoid fossils have been found in marine, brackish and freshwater deposits. [8] Taxa from the Cambrian are from marine or intertidal sediments, while all specimens from the Ordovician to the Triassic are freshwater or brackish. [3] Fossil impressions of euthycarcinoid postabdomens in association with Protichnites trackways in Cambrian intertidal/supratidal deposits also suggest that euthycarcinoids may have been the first arthropods to walk on land. [9] [10] It has been suggested that the biofilms and microbial mats that covered much of the vast tidal flats during the Cambrian Period in North America may have provided the nourishment that lured these arthropods onto the land. [11] Fossil evidence also suggests the possibility that some euthycarcinoids came onto the land to lay and fertilize their eggs via amplexus, as do the modern horseshoe crabs. [12]

Classification

The known species of euthycarcinoids and their distribution were reviewed by Racheboeuf et al. in 2008. Additional species were described by Collette and Hagadorn in 2010. [3] [9]

Family KottixexidaeStarobogatov, 1988

Related Research Articles

<span class="mw-page-title-main">Cambrian</span> First period of the Paleozoic Era, 539–485 million years ago

The Cambrian is the first geological period of the Paleozoic Era, and the Phanerozoic Eon. The Cambrian lasted 53.4 million years from the end of the preceding Ediacaran period 538.8 Ma to the beginning of the Ordovician Period 485.4 Ma.

<span class="mw-page-title-main">Silurian</span> Third period of the Paleozoic Era, 443–419 million years ago

The Silurian is a geologic period and system spanning 24.6 million years from the end of the Ordovician Period, at 443.8 million years ago (Mya), to the beginning of the Devonian Period, 419.2 Mya. The Silurian is the shortest period of the Paleozoic Era. As with other geologic periods, the rock beds that define the period's start and end are well identified, but the exact dates are uncertain by a few million years. The base of the Silurian is set at a series of major Ordovician–Silurian extinction events when up to 60% of marine genera were wiped out.

<span class="mw-page-title-main">Trilobite</span> Class of extinct, Paleozoic arthropods

Trilobites are extinct marine arthropods that form the class Trilobita. Trilobites form one of the earliest known groups of arthropods. The first appearance of trilobites in the fossil record defines the base of the Atdabanian stage of the Early Cambrian period and they flourished throughout the lower Paleozoic before slipping into a long decline, when, during the Devonian, all trilobite orders except the Proetida died out. The last trilobites disappeared in the mass extinction at the end of the Permian about 251.9 million years ago. Trilobites were among the most successful of all early animals, existing in oceans for almost 270 million years, with over 22,000 species having been described.

<span class="mw-page-title-main">Trace fossil</span> Geological record of biological activity

A trace fossil, also known as an ichnofossil, is a fossil record of biological activity by lifeforms but not the preserved remains of the organism itself. Trace fossils contrast with body fossils, which are the fossilized remains of parts of organisms' bodies, usually altered by later chemical activity or mineralization. The study of such trace fossils is ichnology and is the work of ichnologists.

<i>Protichnites</i> Trace fossil

Protichnites is an ichnogenus of trace fossil consisting of the imprints made by the walking activity of certain arthropods. It consists of two rows of tracks and a medial furrow between the two rows. This furrow, which may be broken, set at an angle, and of varying width and depth, is thought to be the result of the tail region contacting the substrate.

<span class="mw-page-title-main">Cheloniellida</span> Order of arthropods (fossil)

Cheloniellida is a taxon of extinct Paleozoic arthropods. As of 2018, 7 monotypic genera of cheloniellids had been formally described, whose fossils are found in marine strata ranging from Ordovician to Devonian in age. Cheloniellida has a controversial phylogenetic position, with previous studies associated it as either a member or relative of various fossil and extant arthropod taxa. It was later accepted as a member of Vicissicaudata within Artiopoda.

<span class="mw-page-title-main">Chasmataspidida</span> Order of arthropods

Chasmataspidids, sometime referred to as chasmataspids, are a group of extinct chelicerate arthropods that form the order Chasmataspidida. Chasmataspidids are probably related to horseshoe crabs (Xiphosura) and/or sea scorpions (Eurypterida), with more recent studies suggest that they form a clade (Dekatriata) with Eurypterida and Arachnida. Chasmataspidids are known sporadically in the fossil record through to the mid-Devonian, with possible evidence suggesting that they were also present during the late Cambrian. Chasmataspidids are most easily recognised by having an opisthosoma divided into a wide forepart (preabdomen) and a narrow hind part (postabdomen) each comprising 4 and 9 segments respectively. There is some debate about whether they form a natural group.

<i>Diplichnites</i> Ichnogenus of Arthropod trackways

Diplichnites are arthropod trackways with two parallel rows of blunt to elongate, closely spaced tracks oriented approximately perpendicularly to the mid-line of the trackway. The term is more often used for the ichnofossils of this description; however, similar trackways from recent arthropods are sometimes given this name as well.

This article attempts to place key plant innovations in a geological context. It concerns itself only with novel adaptations and events that had a major ecological significance, not those that are of solely anthropological interest. The timeline displays a graphical representation of the adaptations; the text attempts to explain the nature and robustness of the evidence.

The Tumblagooda Sandstone is a geological formation deposited during the Silurian or Ordovician periods, between four and five hundred million years ago, and is now exposed on the west coast of Australia in river and coastal gorges near the tourist town of Kalbarri, Kalbarri National Park and the Murchison River gorge, straddling the boundary of the Carnarvon and Perth basins. Visible trackways are interpreted by some to be the earliest evidence of fully terrestrial animals.

<i>Plenocaris</i> Extinct genus of arthropods

Plenocaris plena is a genus of extinct bivalved hymenocarine arthropod that lived in the Cambrian aged Burgess Shale and Chengjiang. Originally described as a species of Yohoia by Walcott in 1912, it was placed into its own genus in 1974.

<i>Bunodes</i> Genus of horseshoe crab relatives

Bunodes is a genus of synziphosurine, a paraphyletic group of fossil chelicerate arthropods. Bunodes was regarded as part of the clade Planaterga. Fossils of the single and type species, B. lunula, have been discovered in deposits of the Silurian period in Ludlow, England. Bunodes is the type genus of the family Bunodidae, the other genera of the same family being Limuloides. There are 64 direct children of Bunodes.

<i>Pseudoniscus</i> Extinct genus of chelicerate

Pseudoniscus is a genus of synziphosurine, a paraphyletic group of fossil chelicerate arthropods. Pseudoniscus was regarded as part of the clade Planaterga. Fossils of the genus have been discovered in deposits of the Silurian period in the United Kingdom, the United States and Estonia. Pseudoniscus is one of the two members of the family Pseudoniscidae, the other being Cyamocephalus.

<i>Ceratiocaris</i> Extinct genus of crustaceans

Ceratiocaris is a genus of paleozoic phyllocarid crustaceans whose fossils are found in marine strata from the Upper Ordovician until the genus' extinction during the Silurian. They are typified by eight short thoracic segments, seven longer abdominal somites and an elongated pretelson somite. Their carapace is slightly oval shaped; they have many ridges parallel to the ventral margin and possess a horn at the anterior end. They are well known from the Silurian Eramosa formation of Ontario, Canada.

<span class="mw-page-title-main">Potsdam Sandstone</span>

The Potsdam Sandstone, more formally known as the Potsdam Group, is a geologic unit of mid-to-late Cambrian age found in Northern New York and northern Vermont and Quebec and Ontario. A well-cemented sandstone of nearly pure quartz, in the 19th century it was widely used in construction and in refractory linings for iron furnaces.

<span class="mw-page-title-main">Blackberry Hill</span> A Lagerstätte located in Wisconsin

Blackberry Hill is a Konservat-Lagerstätte of Cambrian age located within the Elk Mound Group in Marathon County, Wisconsin. It is found in a series of quarries and outcrops that are notable for their large concentration of exceptionally preserved trace fossils in Cambrian tidal flats. One quarry in particular also has the distinction of preserving some of the first land animals. These are preserved as three-dimensional casts, which is unusual for Cambrian animals that are only lightly biomineralized. Additionally, Blackberry Hill is the first occurrence recognized to include Cambrian mass strandings of scyphozoans (jellyfish).

<span class="mw-page-title-main">Paleontology in Wisconsin</span> Paleontological research in the U.S. state of Wisconsin

Paleontology in Wisconsin refers to paleontological research occurring within or conducted by people from the U.S. state of Wisconsin. The state has fossils from the Precambrian, much of the Paleozoic, some a parts of the Mesozoic and the later part of the Cenozoic. Most of the Paleozoic rocks are marine in origin. Because of the thick blanket of Pleistocene glacial sediment that covers the rock strata in most of the state, Wisconsin’s fossil record is relatively sparse. In spite of this, certain Wisconsin paleontological occurrences provide exceptional insights concerning the history and diversity of life on Earth.

<i>Dvulikiaspis</i> Extinct genus of arthropods

Dvulikiaspis is a genus of chasmataspidid, a group of extinct aquatic arthropods. Fossils of the single and type species, D. menneri, have been discovered in deposits of the Early Devonian period in the Krasnoyarsk Krai, Siberia, Russia. The name of the genus is composed by the Russian word двуликий (dvulikij), meaning "two-faced", and the Ancient Greek word ἀσπίς (aspis), meaning "shield". The species name honors the discoverer of the holotype of Dvulikiaspis, Vladimir Vasilyevich Menner.

<i>Mosineia</i> Genus of arthropods from the tidal flats of Laurentia, now central Wisconsin

Mosineia is a genus of euthycarcinoid arthropods that lived on tidal flats of Laurentia at what is now central Wisconsin from the Middle Cambrian to the Late Cambrian. It contains a single species, Mosineia macnaughtoni. Associated trace fossil evidence suggests that this genus spent some of its time subaerially, possibly to mate and to feed on the microbial mats that blanketed the beaches. The genus is named after Mosinee---the city in Marathon County, Wisconsin, near which the fossils were found. The collecting site is known as Blackberry Hill, which is a well known Konservat-Lagerstätte that produces abundant exceptionally preserved fossils.

<i>Cheloniellon</i> Extinct genus of arthropods

Cheloniellon is a monotypic genus of cheloniellid arthropod, known only by one species, Cheloniellon calmani, discovered from the Lower Devonian Hunsrück Slate of Germany.

References

  1. 1 2 Ortega-Hernández et al. (2010) , p. 195
  2. Lamsdell, James C. (2012-12-18). "Revised systematics of Palaeozoic 'horseshoe crabs' and the myth of monophyletic Xiphosura". Zoological Journal of the Linnean Society. 167 (1): 1–27. doi: 10.1111/j.1096-3642.2012.00874.x . ISSN   0024-4082.
  3. 1 2 3 Racheboeuf et al. (2008)
  4. Ortega-Hernández et al. (2010) , p. 196
  5. Edgecombe, Gregory D.; Strullu-Derrien, Christine; Góral, Tomasz; Hetherington, Alexander J.; Thompson, Christine; Koch, Marcus (2020). "Aquatic stem group myriapods close a gap between molecular divergence dates and terrestrial fossil record". Proceedings of the National Academy of Sciences. 117 (16): 8966–8972. doi: 10.1073/pnas.1920733117 . PMC   7183169 . PMID   32253305. S2CID   215408474.
  6. Vannier, Jean; Aria, Cédric; Taylor, Rod S.; Caron, Jean-Bernard (June 2018). "Waptia fieldensis Walcott, a mandibulate arthropod from the middle Cambrian Burgess Shale". Royal Society Open Science. 5 (6): 172206. doi:10.1098/rsos.172206. ISSN   2054-5703. PMC   6030330 . PMID   30110460.
  7. McNamara & Trewin (1993)
  8. Ortega-Hernández et al. (2010) , pp. 196–197
  9. 1 2 Collette & Hagadorn (2010)
  10. Collette, Gass & Hagadorn (2012)
  11. MacNaughton et al. (2002) , p. 394
  12. Collette, Gass & Hagadorn (2012) , pp. 452–453
  13. Collette, Joseph H.; Isbell, John L.; Miller, Molly F. (September 2017). "A unique winged euthycarcinoid from the Permian of Antarctica". Journal of Paleontology. 91 (5): 987–993. doi: 10.1017/jpa.2017.28 . ISSN   0022-3360.
  14. "Terrestrialization in the Ordovician". Geological Society, London, Special Publications. doi:10.1144/sp532-2022-92 . Retrieved 2022-11-14.

Bibliography