Evanston Formation

Last updated
Evanston Formation
Stratigraphic range: Late Cretaceous to Middle Paleocene
Maastrichtian-Selandian
~66–59  Ma
Type Geological formation
Location
Region North America

The Evanston Formation is a geological formation in Wyoming whose strata date back to the Late Cretaceous. [1] Dinosaur remains are among the fossils that have been recovered from the formation. [2] The fossil formation also has the remains of prehistoric mammals from the Paleocene epoch. [3]

Contents

Vertebrate paleofauna

See also

Related Research Articles

Neoplagiaulax is a mammal genus from the Paleocene of Europe and North America. In the case of the latter continent, there may possibly be some slightly earlier, Upper Cretaceous material too. It existed in the age immediately following the extinction of the last dinosaurs. This animal was a member of the extinct order Multituberculata, lying within the suborder Cimolodonta and family Neoplagiaulacidae.

<i>Sauroposeidon</i> Sauropod dinosaur genus from the Early Cretaceous period

Sauroposeidon is a genus of sauropod dinosaur known from several incomplete specimens including a bone bed and fossilized trackways that have been found in the U.S. states of Oklahoma, Wyoming, and Texas.

<span class="mw-page-title-main">Morrison Formation</span> Rock formation in the western United States

The Morrison Formation is a distinctive sequence of Upper Jurassic sedimentary rock found in the western United States which has been the most fertile source of dinosaur fossils in North America. It is composed of mudstone, sandstone, siltstone, and limestone and is light gray, greenish gray, or red. Most of the fossils occur in the green siltstone beds and lower sandstones, relics of the rivers and floodplains of the Jurassic period.

<i>Alamosaurus</i> Extinct genus of dinosaurs

Alamosaurus is a genus of opisthocoelicaudiine titanosaurian sauropod dinosaurs containing a single known species, Alamosaurus sanjuanensis, from the Maastrichtian age of the Late Cretaceous period in what is now southwestern North America. Isolated vertebrae and limb bones indicate that it reached sizes comparable to Argentinosaurus and Puertasaurus, which would make it the absolute largest dinosaur known from North America. Its fossils have been recovered from a variety of rock formations spanning the Maastrichtian age. Specimens of a juvenile Alamosaurus sanjuanensis have been recovered from only a few meters below the Cretaceous-Paleogene boundary in Texas, making it among the last surviving non-avian dinosaur species. Alamosaurus is the only known sauropod to have inhabited North America after their nearly 30-million year absence from the North American fossil record and probably represents an immigrant from South America.

<span class="mw-page-title-main">Lance Formation</span> Geological formation in the United States

The Lance (Creek) Formation is a division of Late Cretaceous rocks in the western United States. Named after Lance Creek, Wyoming, the microvertebrate fossils and dinosaurs represent important components of the latest Mesozoic vertebrate faunas. The Lance Formation is Late Maastrichtian in age, and shares much fauna with the Hell Creek Formation of Montana and North Dakota, the Frenchman Formation of southwest Saskatchewan, and the lower part of the Scollard Formation of Alberta.

<span class="mw-page-title-main">Charles W. Gilmore</span> American paleontologist

Charles Whitney Gilmore was an American paleontologist who gained renown in the early 20th century for his work on vertebrate fossils during his career at the United States National Museum. Gilmore named many dinosaurs in North America and Mongolia, including the Cretaceous sauropod Alamosaurus, Alectrosaurus, Archaeornithomimus, Bactrosaurus, Brachyceratops, Chirostenotes, Mongolosaurus, Parrosaurus, Pinacosaurus, Styracosaurus ovatus and Thescelosaurus.

<span class="mw-page-title-main">Laramie Formation</span> Geological formation in Colorado, US

The Laramie Formation is a geologic formation of the Late Cretaceous (Maastrichtian) age, named by Clarence King in 1876 for exposures in northeastern Colorado, in the United States. It was deposited on a coastal plain and in coastal swamps that flanked the Western Interior Seaway. It contains coal, clay and uranium deposits, as well as plant and animal fossils, including dinosaur remains.

<span class="mw-page-title-main">Cloverly Formation</span> Geological formation in the United States

The Cloverly Formation is a geological formation of Early and Late Cretaceous age that is present in parts of Montana, Wyoming, Colorado and Utah in the western United States. It was named for a post office on the eastern side of the Bighorn Basin in Wyoming by N.H. Darton in 1904. The sedimentary rocks of formation were deposited in floodplain environments and contain vertebrate fossils, including a diverse assemblage of dinosaur remains. In 1973, the Cloverly Formation Site was designated as a National Natural Landmark by the National Park Service.

<span class="mw-page-title-main">Bisti/De-Na-Zin Wilderness</span> Wilderness in New Mexico, United States

The Bisti/De-Na-Zin Wilderness is a 45,000-acre (18,000 ha) wilderness area located in San Juan County in the U.S. state of New Mexico. Established in 1984, the Wilderness is a desolate area of steeply eroded badlands managed by the Bureau of Land Management, except three parcels of private Navajo land within its boundaries. The John D. Dingell, Jr. Conservation, Management, and Recreation Act, signed March 12, 2019, expanded the Bisti/De-Na-Zin Wilderness by approximately 2,250 acres.

<span class="mw-page-title-main">North Horn Formation</span> Geological formation in Utah

The North Horn Formation is a widespread non-marine sedimentary unit with extensive outcrops exposed in central and eastern Utah. The formation locally exceeds 3,600 feet (1,100 m) in thickness and is characterized by fluvial, lacustrine, and floodplain dominated systems, representing a terrestrial, high energy, depositional environment. The sediments date from Late Cretaceous (Maastrichtian) to early Paleocene in age and include the K-Pg extinction event boundary; however, this boundary is extremely difficult to locate and there is no strong stratigraphic evidence available that indicates a specific marker bed such as an iridium rich clay layer. Thus far, the only visible evidence is represented in the form of faunal turnover from dinosaur to mammal-dominated fossil assemblages. Taxa from the Cretaceous part of the formation include squamates, testudines, choristoderes, crocodyliforms, sharks, bony fishes, amphibians, mammals, dinosaurs, eggshell fragments, trace fossils, mollusks, plant macrofossils, such as wood fragments, and palynomorphs.

<span class="mw-page-title-main">McRae Group</span> A geologic formation in New Mexico

The McRae Group is a geological group exposed in southern New Mexico whose strata, including layers of the Hall Lake Formation and Jose Creek Formation, date to the Late Cretaceous. Dinosaur remains are among the fossils that have been recovered from this unit.

<span class="mw-page-title-main">Javelina Formation</span> Geological formation in Texas, USA

The Javelina Formation is a geological formation in Texas. Dating has shown that the strata date to the Maastrichtian stage of the Late Cretaceous, approximately 70 to 66.5 million years old. The middle part of the formation has been dated to about 69 million years ago plus or minus 1 million years and the top situated near the Cretaceous–Paleogene boundary, dated to 66 Ma ago. Dinosaur remains are among the fossils that have been recovered from the formation.

The El Picacho Formation is a geological formation in Texas, United States, whose strata date back to the Late Cretaceous. Dinosaur remains are among the fossils that have been recovered from the formation. The paleosols found here are rich in clay, calcite, and rhizoliths which show that during the Cretaceous period, this fossil formation, just like the neighboring Javelina Formation and Aguja Formation, was a fluvial flood plain.

The Black Peaks Formation is a geological formation in Texas whose strata date back to the Late Cretaceous. Dinosaur remains and the pterosaur Quetzalcoatlus northropi have been among the fossils reported from the formation. The boundary with the underlying Javelina Formation has been estimated at about 66.5 million years old. The formation preserves the rays Rhombodus and Dasyatis, as well as many gar scales.

The Ferris Formation is a Late Cretaceous to Paleocene, fluvial-deltaic geological formation in southern Wyoming. It contains a variety of trace and body fossils, preserved in sandy fluvial channel deposits and overbank units. Dinosaur remains are fragmentary, but include Triceratops, Tyrannosaurus, dromaeosaurids, Paronychodon, Ricardoestesia, Edmontosaurus, Edmontonia, Ankylosaurus, and Pachycephalosaurus.

<span class="mw-page-title-main">Nacimiento Formation</span> A geologic formation in New Mexico

The Nacimiento Formation is a sedimentary rock formation found in the San Juan Basin of western New Mexico. It has an age of 61 to 65.7 million years, corresponding to the early and middle Paleocene. The formation has yielded an abundance of fossils from shortly after the Cretaceous-Paleogene extinction event that provide clues to the recovery and diversification of mammals following the extinction event.

<span class="mw-page-title-main">Ojo Alamo Formation</span> Geologic formation in New Mexico

The Ojo Alamo Formation is a geologic formation in New Mexico spanning the Mesozoic/Cenozoic boundary. Non-avian dinosaur fossils have controversially been identified in beds of this formation dating from after the Cretaceous–Paleogene extinction event, but these have been explained as either misidentification of the beds in question or as reworked fossils, fossils eroded from older beds and redeposited in the younger beds.

Dinosaur paleobiogeography is the study of dinosaur geographic distribution, based on evidence in the fossil record.

<span class="mw-page-title-main">Paleontology in New Mexico</span>

Paleontology in New Mexico refers to paleontological research occurring within or conducted by people from the U.S. state of New Mexico. The fossil record of New Mexico is exceptionally complete and spans almost the entire stratigraphic column. More than 3,300 different kinds of fossil organisms have been found in the state. Of these more than 700 of these were new to science and more than 100 of those were type species for new genera. During the early Paleozoic, southern and western New Mexico were submerged by a warm shallow sea that would come to be home to creatures including brachiopods, bryozoans, cartilaginous fishes, corals, graptolites, nautiloids, placoderms, and trilobites. During the Ordovician the state was home to algal reefs up to 300 feet high. During the Carboniferous, a richly vegetated island chain emerged from the local sea. Coral reefs formed in the state's seas while terrestrial regions of the state dried and were home to sand dunes. Local wildlife included Edaphosaurus, Ophiacodon, and Sphenacodon.

The sauropod hiatus is a period in the North American fossil record for most of the Late Cretaceous noted for its lack of sauropod remains. It may represent an extinction event, possibly caused by competition with ornithischian herbivores, habitat loss from the expansion of the Western Interior Seaway, or both. Alternatively, it has been argued that the hiatus represents a decrease in inland deposits that would have effectively preserved the animals, creating the illusion of an extinction. The sauropod hiatus ended shortly before the end of the Cretaceous, with the appearance of Alamosaurus, most likely an immigrant from South America, in the southern parts of North America.

References

  1. Oriel, Simon S.; Tracey, Jr., Joshua (1970). "Uppermost Cretaceous and Tertiary Stratigraphy of Fossil Basin, Southwestern Wyoming" (PDF). United States Geologic Survey Publication Warehouse. pp. 5–14. Archived from the original (PDF) on March 5, 2016. Retrieved February 18, 2024.
  2. 1 2 Weishampel, David B.; Dodson, Peter; Osmólska, Halszka (2004). "The dinosauria". search.worldcat.org. Worldcat.org. Berkeley: University of California Press. pp. 574–588. Retrieved 2024-02-18.
  3. 1 2 3 4 5 6 Gazin, Lewis C. (1969). "New Occurrence of Paleocene Mammals in the Evanston Formation, Southwestern Wyoming". Smithsonian Contributions to Paleobiology: 1–17. doi:10.5479/si.00810266.2.1 . Retrieved 18 November 2020.
  4. Lucas, Spencer G.; Sullivan, Robert M. (January 2000). "The sauropod dinosaur Alamosaurus from the Upper Cretaceous of the San Juan Basin, New Mexico". New Mexico Museum of Natural History and Science Bulletin. 17: 147–156. Retrieved 18 November 2020.
  5. Williamson, Thomas E.; Weil, Anne (December 12, 2008). "Stratigraphic Distribution of Sauropods in the Upper Cretaceous of the San Juan Basin, New Mexico, with Comments on North America's Cretaceous 'Sauropod Hiatus'". Journal of Vertebrate Paleontology. 28 (4). Taylor & Francis, Ltd.: 1218–1223. JSTOR   20491055 . Retrieved 18 November 2020.
  6. "The Geologic History of Fossil Butte National Monument and Fossil Basin NPS Occasional Paper No. 3". NPS.gov. National Park Service. Retrieved 1 March 2005.

41°48′24″N110°40′53″W / 41.8068°N 110.6813°W / 41.8068; -110.6813