Selandian | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Chronology | |||||||||||||
| |||||||||||||
Formerly part of | Tertiary Period/System | ||||||||||||
Etymology | |||||||||||||
Name formality | Formal | ||||||||||||
Usage information | |||||||||||||
Celestial body | Earth | ||||||||||||
Regional usage | Global (ICS) | ||||||||||||
Time scale(s) used | ICS Time Scale | ||||||||||||
Definition | |||||||||||||
Chronological unit | Age | ||||||||||||
Stratigraphic unit | Stage | ||||||||||||
Time span formality | Formal | ||||||||||||
Lower boundary definition | Onset of sea-level drop and carbon isotope shift | ||||||||||||
Lower boundary GSSP | Zumaia Section, Basque Country, Spain 43°17′57″N2°15′40″W / 43.2992°N 2.2610°W | ||||||||||||
Lower GSSP ratified | 2008 [3] | ||||||||||||
Upper boundary definition | Base of magnetic polarity chronozone C26n | ||||||||||||
Upper boundary GSSP | Zumaia Section, Basque Country, Spain 43°17′59″N2°15′39″W / 43.2996°N 2.2609°W | ||||||||||||
Upper GSSP ratified | 2008 [3] |
The Selandian is a stage in the Paleocene. It spans the time between 61.6 and 59.2 Ma. It is preceded by the Danian and followed by the Thanetian. [4] Sometimes[ when? ] the Paleocene is subdivided[ by whom? ] in subepochs, in which the Selandian forms the "middle Paleocene".
The Selandian was introduced in scientific literature by Danish geologist Alfred Rosenkrantz in 1924. It is named after the Danish island of Zealand (Danish: Sjælland) given its prevalence there. [5]
The base of the Selandian is close to the boundary between biozones NP4 and NP5. It is slightly after the first appearances of many new species of the calcareous nanoplankton genus Fasciculithus (F. ulii, F. billii, F. janii, F. involutus, F. tympaniformis and F. pileatus) and close to the first appearance of calcareous nanoplankton species Neochiastozygus perfectus. At the original type location in Denmark the base of the Selandian is an unconformity. The official Global Boundary Stratotype Section and Point (GSSP) was established in the Zumaia section ( 43°18′N002°16′W / 43.300°N 2.267°W ) at the beach of Itzurun in the Basque Country, northern Spain. [6]
The top of the Selandian (the base of the Thanetian) is laid at the base of magnetic chronozone C26n.
The Selandian Stage overlaps with the lower part of the Tiffanian North American Land Mammal Age, the Peligran, Tiupampan and lower Itaboraian South American Land Mammal Ages and part of the Nongshanian Asian Land Mammal Age. It is coeval with the lower part of the Wangerripian Stage from the Australian regional timescale.
The start of the Selandian represents a sharp depositional change in the North Sea Basin, where there is a shift to siliciclastic deposition due to the uplift and erosion of the Scotland-Shetland area after nearly 40 million years of calcium carbonate deposition. [7] This change occurs at the same time as the onset of a foreland basin formation in Spitsbergen due to compression between Greenland and Svalbard, [8] suggesting a common tectonic cause that altered the relative motions of the Greenland Plate and the Eurasian Plate. This plate reorganisation event is also manifest as a change in seafloor spreading direction in the Labrador Sea around this time. [9]
The fauna of the Selandian consisted of giant snakes ( Titanoboa ), [10] crocodiles, champsosaurs, Gastornithiformes, [11] owls; and a few archaic forms of mammals, such as mesonychids, pantodonts, primate relatives plesiadapids, and multiberculates.
The flora was composed of cacti, ferns, and palm trees.
The Paleogene Period is a geologic period and system that spans 43 million years from the end of the Cretaceous Period 66 Ma to the beginning of the Neogene Period 23.03 Ma. It is the first period of the Cenozoic Era, the tenth period of the Phanerozoic and is divided into the Paleocene, Eocene, and Oligocene epochs. The earlier term Tertiary Period was used to define the time now covered by the Paleogene Period and subsequent Neogene Period; despite no longer being recognized as a formal stratigraphic term, "Tertiary" still sometimes remains in informal use. Paleogene is often abbreviated "Pg", although the United States Geological Survey uses the abbreviation "Pe" for the Paleogene on the Survey's geologic maps.
The Paleocene–Eocene thermal maximum (PETM), alternatively ”Eocene thermal maximum 1 (ETM1)“ and formerly known as the "Initial Eocene" or “Late Paleocene thermal maximum", was a geologically brief time interval characterized by a 5–8 °C global average temperature rise and massive input of carbon into the ocean and atmosphere. The event began, now formally codified, at the precise time boundary between the Paleocene and Eocene geological epochs. The exact age and duration of the PETM remain uncertain, but it occurred around 55.8 million years ago (Ma) and lasted about 200 thousand years (Ka).
The Late Cretaceous is the younger of two epochs into which the Cretaceous Period is divided in the geologic time scale. Rock strata from this epoch form the Upper Cretaceous Series. The Cretaceous is named after creta, the Latin word for the white limestone known as chalk. The chalk of northern France and the white cliffs of south-eastern England date from the Cretaceous Period.
The Aquitanian is, in the International Commission on Stratigraphy's (ICS) geologic timescale, the oldest age or lowest stage in the Miocene. It spans the time between 23.03 ± 0.05 Ma and 20.43 ± 0.05 Ma during the Early Miocene. It was a dry, cooling period. The Aquitanian succeeds the Chattian and precedes the Burdigalian.
The Bartonian is, in the International Commission on Stratigraphy's (ICS) geologic time scale, a stage or age in the middle of the Eocene Epoch or Series. The Bartonian Age spans the time between 41.2 and37.71 Ma. It is preceded by the Lutetian and is followed by the Priabonian Age.
The Maastrichtian is, in the International Commission on Stratigraphy (ICS) geologic timescale, the latest age of the Late Cretaceous Epoch or Upper Cretaceous Series, the Cretaceous Period or System, and of the Mesozoic Era or Erathem. It spanned the interval from 72.1 to 66 million years ago. The Maastrichtian was preceded by the Campanian and succeeded by the Danian. It is named after the city of Maastricht, the capital of the Limburg province in the Netherlands.
The Serravallian is, in the geologic timescale, an age or a stage in the middle Miocene Epoch/Series, which spans the time between 13.82 Ma and 11.63 Ma. The Serravallian follows the Langhian and is followed by the Tortonian.
The Danian is the oldest age or lowest stage of the Paleocene Epoch or Series, of the Paleogene Period or System, and of the Cenozoic Era or Erathem. The beginning of the Danian is at the Cretaceous–Paleogene extinction event 66 Ma. The age ended 61.6 Ma, being followed by the Selandian.
The Thanetian is, in the ICS Geologic timescale, the latest age or uppermost stratigraphic stage of the Paleocene Epoch or Series. It spans the time between 59.2 and56 Ma. The Thanetian is preceded by the Selandian Age and followed by the Ypresian Age. The Thanetian is sometimes referred to as the Late Paleocene.
In the geologic timescale the Ypresian is the oldest age or lowest stratigraphic stage of the Eocene. It spans the time between 56 and47.8 Ma, is preceded by the Thanetian Age and is followed by the Eocene Lutetian Age. The Ypresian is consistent with the Lower Eocene.
The Lutetian is, in the geologic timescale, a stage or age in the Eocene. It spans the time between 47.8 and41.2 Ma. The Lutetian is preceded by the Ypresian and is followed by the Bartonian. Together with the Bartonian it is sometimes referred to as the Middle Eocene Subepoch.
The Priabonian is, in the ICS's geologic timescale, the latest age or the upper stage of the Eocene Epoch or Series. It spans the time between 37.71 and33.9 Ma. The Priabonian is preceded by the Bartonian and is followed by the Rupelian, the lowest stage of the Oligocene.
The Chattian is, in the geologic timescale, the younger of two ages or upper of two stages of the Oligocene Epoch/Series. It spans the time between 27.82 and23.03 Ma. The Chattian is preceded by the Rupelian and is followed by the Aquitanian.
A system in stratigraphy is a sequence of strata that were laid down together within the same corresponding geological period. The associated period is a chronological time unit, a part of the geological time scale, while the system is a unit of chronostratigraphy. Systems are unrelated to lithostratigraphy, which subdivides rock layers on their lithology. Systems are subdivisions of erathems and are themselves divided into series and stages.
Bathysoma is an extinct genus of marine lampriform ray-finned fish from the early-mid Paleocene. It contains a single species, B. lutkeni from Sweden. Its fossils are common in exposures of the Danian København Limestone Formation at Limhamns kalkbrott, one of the largest quarries in northern Europe. A single specimen is also known from an erratic boulder from the Selandian Lellinge Greensand Formation of southern Sweden.
The Paleocene, or Palaeocene, is a geological epoch that lasted from about 66 to 56 million years ago (mya). It is the first epoch of the Paleogene Period in the modern Cenozoic Era. The name is a combination of the Ancient Greek παλαιός palaiós meaning "old" and the Eocene Epoch, translating to "the old part of the Eocene".
The Ieper Group is a group of rock strata in the subsurface of northwest Belgium. The group is subdivided into three marine formations, all formed during the Ypresian, a single age of the geologic timescale. Both age and group are named after the West Flemish town of Ypres, for which the Dutch name is "Ieper".
Abdounia is an extinct genus of requiem shark which lived during the Paleogene period. It is mainly known from isolated teeth. It is one of the earliest requiem sharks, and attained widespread success in North America, Europe, and Africa.
A hyperthermal event corresponds to a sudden warming of the planet on a geologic time scale.