Fehling's solution

Last updated
Fehling's test
Fehling.JPG
On the left, the solution in the absence of reducing sugars. On the right, copper oxide, which would appear in the bottom of the solution if reducing sugars are present.
ClassificationColorimetric method
AnalytesMonosaccharides

In organic chemistry, Fehling's solution is a chemical reagent used to differentiate between water-soluble carbohydrate and ketone (>C=O) functional groups, and as a test for reducing sugars and non-reducing sugars, supplementary to the Tollens' reagent test. The test was developed by German chemist Hermann von Fehling in 1849. [1]

Contents

Laboratory preparation

Fehling's solution is prepared by combining two separate solutions: Fehling's A, which is a deep blue aqueous solution of copper(II) sulfate, and Fehling's B, which is a colorless solution of aqueous potassium sodium tartrate (also known as Rochelle salt) made strongly alkaline with sodium hydroxide. These two solutions, stable separately, are combined when needed for the test because the copper(II) complex formed by their combination is not stable: it slowly decomposes into copper hydroxide in the alkaline conditions. The active reagent is a tartrate complex of Cu2+, which serves as an oxidizing agent. The tartrate serves as a ligand. However, the coordination chemistry is complex and various species with different metal to ligand ratio have been determined. [2] [3] [4] [5] [6]

Other methods of preparing comparable cupric-ion test-reagent solutions were developed at about the same time as Fehling's. These include the Violette solution (eponymous for Charles Violette) and the Soxhlet solution (eponymous for Franz von Soxhlet), both containing tartrate, and Soldaïni's solution (eponymous for Arturo Soldaïni), which instead contains carbonate. [7]

Use of the reagent

Fehling's solution can be used to distinguish aldehyde vs ketone functional groups. The compound to be tested is added to the Fehling's solution and the mixture is heated. Aldehydes are oxidized, giving a positive result, but ketones do not react, unless they are α-hydroxy ketones. The bistartratocuprate(II) complex oxidizes the aldehyde to a carboxylate anion, and in the process the copper(II) ions of the complex are reduced to copper(I) ions. Red copper(I) oxide then precipitates out of the reaction mixture, which indicates a positive result i.e. that redox has taken place (this is the same positive result as with Benedict's solution).

Fehling's test can be used as a generic test for monosaccharides and other reducing sugars (e.g., maltose). It will give a positive result for aldose monosaccharides (due to the oxidisable aldehyde group) but also for ketose monosaccharides, as they are converted to aldoses by the base in the reagent, and then give a positive result. [8]

Fehling's can be used to screen for glucose in urine, thus detecting diabetes. Another use is in the breakdown of starch to convert it to glucose syrup and maltodextrins in order to measure the amount of reducing sugar, thus revealing the dextrose equivalent (DE) of the starch sugar.

Formic acid (HCO2H) also gives a positive Fehling's test result, as it does with Tollens' test and Benedict's solution also. The positive tests are consistent with it being readily oxidizable to carbon dioxide.

The solution cannot differentiate between benzaldehyde and acetone.

Net reaction

The net reaction between an aldehyde and the copper(II) ions in Fehling's solution may be written as:

or with the tartrate included:

See also

Related Research Articles

<span class="mw-page-title-main">Ketone</span> Organic compounds of the form >C=O

In organic chemistry, a ketone is an organic compound with the structure R−C(=O)−R', where R and R' can be a variety of carbon-containing substituents. Ketones contain a carbonyl group −C(=O)−. The simplest ketone is acetone, with the formula (CH3)2CO. Many ketones are of great importance in biology and in industry. Examples include many sugars (ketoses), many steroids, and the solvent acetone.

<span class="mw-page-title-main">Aldehyde</span> Organic compound containing the functional group R−CH=O

In organic chemistry, an aldehyde is an organic compound containing a functional group with the structure R−CH=O. The functional group itself can be referred to as an aldehyde but can also be classified as a formyl group. Aldehydes are a common motif in many chemicals important in technology and biology.

Benedict's reagent is a chemical reagent and complex mixture of sodium carbonate, sodium citrate, and copper(II) sulfate pentahydrate. It is often used in place of Fehling's solution to detect the presence of reducing sugars. The presence of other reducing substances also gives a positive result. Such tests that use this reagent are called the Benedict's tests. A positive test with Benedict's reagent is shown by a color change from clear blue to brick-red with a precipitate.

Chromic acid is jargon for a solution formed by the addition of sulfuric acid to aqueous solutions of dichromate. It consists at least in part of chromium trioxide.

<span class="mw-page-title-main">Copper(I) oxide</span> Chemical compound – an oxide of copper with formula Cu2O

Copper(I) oxide or cuprous oxide is the inorganic compound with the formula Cu2O. It is one of the principal oxides of copper, the other being copper(II) oxide or cupric oxide (CuO). Cuprous oxide is a red-coloured solid and is a component of some antifouling paints. The compound can appear either yellow or red, depending on the size of the particles. Copper(I) oxide is found as the reddish mineral cuprite.

<span class="mw-page-title-main">Copper(II) nitrate</span> Chemical compound

Copper(II) nitrate describes any member of the family of inorganic compounds with the formula Cu(NO3)2(H2O)x. The hydrates are blue solids. Anhydrous copper nitrate forms blue-green crystals and sublimes in a vacuum at 150-200 °C. Common hydrates are the hemipentahydrate and trihydrate.

<span class="mw-page-title-main">Ketose</span> Monosaccharides with one >C=O group per molecule

In organic chemistry, a ketose is a monosaccharide containing one ketone group per molecule. The simplest ketose is dihydroxyacetone, which has only three carbon atoms. It is the only ketose with no optical activity. All monosaccharide ketoses are reducing sugars, because they can tautomerize into aldoses via an enediol intermediate, and the resulting aldehyde group can be oxidised, for example in the Tollens' test or Benedict's test. Ketoses that are bound into glycosides, for example in the case of the fructose moiety of sucrose, are nonreducing sugars.

<span class="mw-page-title-main">Reducing sugar</span> Sugars that contain free OH group at the anomeric carbon atom

A reducing sugar is any sugar that is capable of acting as a reducing agent. In an alkaline solution, a reducing sugar forms some aldehyde or ketone, which allows it to act as a reducing agent, for example in Benedict's reagent. In such a reaction, the sugar becomes a carboxylic acid.

<span class="mw-page-title-main">Barfoed's test</span> Chemical test for monosaccharides

Barfoed's test is a chemical test used for detecting the presence of monosaccharides. It is based on the reduction of copper(II) acetate to copper(I) oxide (Cu2O), which forms a brick-red precipitate.

<span class="mw-page-title-main">Potassium dichromate</span> Chemical compound

Potassium dichromate, K2Cr2O7, is a common inorganic chemical reagent, most commonly used as an oxidizing agent in various laboratory and industrial applications. As with all hexavalent chromium compounds, it is acutely and chronically harmful to health. It is a crystalline ionic solid with a very bright, red-orange color. The salt is popular in laboratories because it is not deliquescent, in contrast to the more industrially relevant salt sodium dichromate.

<span class="mw-page-title-main">Tollens' reagent</span> Chemical reagent used to distinguish between aldehydes and ketones

Tollens' reagent is a chemical reagent used to distinguish between aldehydes and ketones along with some alpha-hydroxy ketones which can tautomerize into aldehydes. The reagent consists of a solution of silver nitrate, ammonium hydroxide and some sodium hydroxide. It was named after its discoverer, the German chemist Bernhard Tollens. A positive test with Tollens' reagent is indicated by the precipitation of elemental silver, often producing a characteristic "silver mirror" on the inner surface of the reaction vessel.

<span class="mw-page-title-main">Copper(I) chloride</span> Chemical compound

Copper(I) chloride, commonly called cuprous chloride, is the lower chloride of copper, with the formula CuCl. The substance is a white solid sparingly soluble in water, but very soluble in concentrated hydrochloric acid. Impure samples appear green due to the presence of copper(II) chloride (CuCl2).

<span class="mw-page-title-main">Chemical test</span> Procedure for identifying or quantifying a chemical compound or group

In chemistry, a chemical test is a qualitative or quantitative procedure designed to identify, quantify, or characterise a chemical compound or chemical group.

The Cannizzaro reaction, named after its discoverer Stanislao Cannizzaro, is a chemical reaction which involves the base-induced disproportionation of two molecules of a non-enolizable aldehyde to give a primary alcohol and a carboxylic acid.

2,4-Dinitrophenylhydrazine (2,4-DNPH or DNPH) is the organic compound C6H3(NO2)2NHNH2. DNPH is a red to orange solid. It is a substituted hydrazine. The solid is relatively sensitive to shock and friction. For this reason DNPH is usually handled as a wet powder. DNPH is a precursor to the drug Sivifene.

<span class="mw-page-title-main">Bicinchoninic acid assay</span> Method to determine protein concentration

The bicinchoninic acid assay, also known as the Smith assay, after its inventor, Paul K. Smith at the Pierce Chemical Company, now part of Thermo Fisher Scientific, is a biochemical assay for determining the total concentration of protein in a solution, similar to Lowry protein assay, Bradford protein assay or biuret reagent. The total protein concentration is exhibited by a color change of the sample solution from blue to purple in proportion to protein concentration, which can then be measured using colorimetric techniques. The BCA assay was patented by Pierce Chemical Company in 1989 & the patent expired in 2006.

<span class="mw-page-title-main">Biuret test</span> Chemical test for detecting peptide bonds

In chemistry, the Biuret test, also known as Piotrowski's test, is a chemical test used for detecting the presence of at least two peptide bonds in a molecule. In the presence of peptides, a copper(II) ion forms mauve-colored coordination complexes in an alkaline solution. The reaction was first observed in 1833; In Poland, the biuret test is also known as Piotrowski's test in honor of the Polish physiologist Gustaw Piotrowski who independently rediscovered it in 1857. Several variants on the test have been developed, such as the BCA test and the Modified Lowry test.

<span class="mw-page-title-main">Aldonic acid</span>

Aldonic acids are sugar acids with the general chemical formula, HO2C(CHOH)nCH2OH. They are obtained by oxidizing the aldehyde (-CHO group) of an aldose to form a carboxylic acid (-COOH group). Aldonic acids are generally found in their ring form. However, these rings do not have a chiral carbon at the terminal end bearing the aldehyde, and they cannot form R−O−R′ linkages between different molecules.

<span class="mw-page-title-main">Collins reagent</span> Chemical compound

Collins reagent is the complex of chromium(VI) oxide with pyridine in dichloromethane. This metal-pyridine complex, a red solid, is used to oxidize primary alcohols to the corresponding aldehydes and secondary alcohols to the corresponding ketones. This complex is a hygroscopic orange solid.

Dextrose equivalent (DE) is a measure of the amount of reducing sugars present in a sugar product, expressed as a percentage on a dry basis relative to dextrose. The dextrose equivalent gives an indication of the average degree of polymerisation (DP) for starch sugars. As a rule of thumb, DE × DP = 120.

References

  1. H. Fehling (1849). "Die quantitative Bestimmung von Zucker und Stärkmehl mittelst Kupfervitriol" [The quantitative determination of sugar and starch by means of copper sulfate](PDF). Annalen der Chemie und Pharmacie . 72 (1): 106–113. doi:10.1002/jlac.18490720112.
  2. T. G. Hörner, P. Klüfers: The Species of Fehling's Solution. In: Eur. J. Inorg. Chem. 2016, S. 1798–1807, doi:10.1002/ejic.201600168.
  3. Fangfang Jian, Pusu Zhao, Qingxiang Wang: Synthesis and crystal structure of a novel tartrate copper(II) two-dimensional coordination polymer: {[Cu2(C4H4O6)2(H2O)2]·4H2O}. In: J. Coord. Chem. 58, 2005, S. 1133–1138, doi:10.1080/00958970500148446.
  4. C. K. Prout, J. R. Carruthers, F. J. C. Rossotti: Structure and stability of carboxylate complexes. Part VII. Crystal and molecular structures of copper(II)meso-tartrate trihydrate and copper(II)d-tartrate trihydrate. In: J. Chem. Soc. A, Inorg. Phys. Theo., 1971, S. 3336–3342, doi:10.1039/J19710003336.
  5. I. Quasim, A. Firdous, B. Want, S. K. Khosa, P. . Kotru: Single crystal growth and characterization of pure and sodium-modified copper tartrate. In: J. Cryst. Growth. 310, 2008, S. 5357–5363, doi:10.1016/j.jcrysgro.2008.09.021.
  6. N. D. Jespersen: Novel Copper-Tartrate Coordination Compounds. In: Anal. Let. 5, 1972, S. 497–508.
  7. Spencer, Guilford L. (1898). Handbook for Cane-sugar Manufacturers and Their Chemists (third ed.). Wiley. pp. 62–63.
  8. "Fehling's Test for Reducing Sugars". Archived from the original on 2008-01-24. Retrieved 2008-01-19.