Names | |
---|---|
IUPAC name Abieta-8,11,13-trien-12-ol | |
Systematic IUPAC name (4bS,8aS)-4b,8,8-Trimethyl-2-(propan-2-yl)-4b,5,6,7,8,8a,9,10-octahydrophenanthren-3-ol | |
Identifiers | |
3D model (JSmol) | |
ChEBI | |
ChEMBL | |
ChemSpider | |
PubChem CID | |
UNII | |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
C20H30O | |
Molar mass | 286.459 g·mol−1 |
Density | 1.0±0.1 g/cm3 |
Melting point | 56-57 °C |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Ferruginol is a natural phenol with a terpenoid substructure. Specifically, it is a diterpene of the abietane chemical class, meaning it is characterized by three fused six-membered rings and alkyl functional groups. Ferruginol was first identified in 1939 by Brandt and Neubauer as the main component in the resin of the Miro tree (Podocarpus ferrugneus) [1] and has since been isolated from other conifer species in the families Cupressaceae and Podocarpaceae . As a biomarker, the presence of ferruginol in fossils, mainly resin, is used to describe the density of these conifers in that particular biosphere throughout time.
Ferruginol is a phenolic abietene, a type of tricyclic diterpenoid derived from terrestrial plants. [2] It has a molecular composition of C20H30O with a molecular weight of 286 g/mole. Along with its presence in the Verbenaceae family, it has been found in a variety of conifer families including Podocarpaceae, the ancient Araucariaceae, and the extinct Cheirolepidiaceae. It is particularly useful as a biomarker because of its concentration in the Cupressaceae family. [2] In these conifers, it acts as a plant metabolite, along with some protective and antibacterial roles.
As a polar terpenoid, ferruginol was thought to have poor preservation potential. However, the discovery of resin fossils provided unaltered natural diterpenoids that can be used to understand botanical diversity during a given geological age. Analysis of macrofossils or clay sediments is also used to identify the presence of ferruginol, though these samples may not be fully preserved. Comparing the composition of fossilized coal or clay from the same region as resin fossils can indicate the original biological precursors of these samples. Additionally, the diagenetic alterations of fossils can be used to understand the environmental changes in the time after they were formed. [3] General abietane diterpenoid abietic acids have been connected to the diagenetic products simonellite and retene. Microbial and abiotic degradation make it so most conifer biomarkers cannot be linked to specific species, so it is especially useful to find resinous samples that are able to provide more detailed identification. [4]
Due to the improved preservation of ferruginol and other diterpenoids in fossil resin, they have been found to be underrepresented in sediment samples when compared to angiosperms, whose leaf waxes are more free to disperse throughout the sample. Even in regions known to have a high abundance of conifers, sediment samples have been found to contain little to no unaltered diterpenoids. The relative of abundance of conifers cannot therefore be directly determined from biomarker concentrations in sediment samples, as this will be biased by preservation. [2]
The presence of ferruginol has also been used in more modern samples as biological tracers. For example, analyzing the honeybee product propolis helps establish the main botanical source collected by the bees. [5]
The sample preparation to measure ferruginol abundance varies depending on form the sample initially takes, though generally follows the same structure. After physically crushing the sample, N,O-bistrifluoroacetamide (BSTFA) is used to transform molecules into trimethyl-silyl (TMS) derivatives. It is then chemically extracted into neutral, aromatic, and polar fractions using specified eluents, often hexane, dichloromethane, and methanol, respectively. [2] The aromatic fractions are then analyzed using gas chromatography–mass spectrometry (GC-MS), and library data along with fragmentation patterns are used to identify the molecular makeup of each notable peak and their relative concentration in the sample. Ferruginol can be identified with a molecular weight of 286 m/z. [3]
Along with GC-MS, ferruginol has also been analyzed using cross polarization/magic angle spinning nuclear magnetic resonance (3C-CPMAS-NMR) to provide more detailed analysis. [6] Additionally, time-of-flight secondary ion mass spectrometry (TOF-SIMS) has been used in combination with GC-MS with samples collected from still living organisms for surface imaging and depth profiling. [7]
Research published in 2005 found that this and other compounds of the class from Sequoia have in vitro anti-tumor and anti-inflammatory properties in cell lines. In vitro studies have shown human colon, breast, and lung tumor reduction and reduction in oncogene transformed cells as well. Ferruginol has also been found to have antibacterial activity and gastroprotective effects. [8] [9] [10]
When studied against human prostate cancer cells, ferruginol induced cell death by suppressing survival signaling pathways. [11] Specific activity of tumor growth inhibition (GI) is 2-5 micrograms/milliliter. [12] Beyond anti-cancer activity, studies with mice showed that ferruginol had anti-inflammatory properties against induced ulcerative colitis [13] and acted as a gastroprotective agent against gastro lesions. [14]
The Araripe Basin in Brazil is well known for the diverse and well-preserved collection of fossils. Despite this, the Ipubi Formation in the central Santana Group is only poorly explored. To better understand the paleoflora, researchers at Universidade Federal Rural de Pernambuco analyzed amber resin from the black shales that make up the collection site. Palynological content had been used to date the Ipubi Formation as Aptian-Albian (125–100.5 mya), and the amber samples were thought to be allochthonous, having swept in from nearby conifer sources. GC-MS analysis resulted in the chromatogram shown to the right, with the ferruginol peak marked in red. Additionally, 3C-CPMAS-NMR was used to further understand the sample. The terpenoids analyzed were separated into three groups: monoterpenes, sesquiterpenoids, and diterpenoids. Diterpenoids of the abietanic class were the most abundant in the amber, though they are widely present in all conifer families and therefore less useful in identifying specific contributing species. The detection of ferruginol helped limit the biological origin to the families Cupressaceae, Podocarpaceae and Cheirolepidiaceae. Further more, the absence callitrisates, kauranes and phyllocladanes excluded Cupressaceae as the source. Therefore, the possible botanical sources of the amber collected in the Ipubi Formation were identified as Podocarpaceae and Cheirolepidiaceae. The results from the amber samples are consistent with environmental conditions determined from a separate analysis of the bituminous shale. [6]
Amber is fossilized tree resin. Examples of it have been appreciated for its color and natural beauty since the Neolithic times, and worked as a gemstone since antiquity. Amber is used in jewelry and as a healing agent in folk medicine.
The terpenoids, also known as isoprenoids, are a class of naturally occurring organic chemicals derived from the 5-carbon compound isoprene and its derivatives called terpenes, diterpenes, etc. While sometimes used interchangeably with "terpenes", terpenoids contain additional functional groups, usually containing oxygen. When combined with the hydrocarbon terpenes, terpenoids comprise about 80,000 compounds. They are the largest class of plant secondary metabolites, representing about 60% of known natural products. Many terpenoids have substantial pharmacological bioactivity and are therefore of interest to medicinal chemists.
Terpenes are a class of natural products consisting of compounds with the formula (C5H8)n for n ≥ 2. Terpenes are major biosynthetic building blocks. Comprising more than 30,000 compounds, these unsaturated hydrocarbons are produced predominantly by plants, particularly conifers. In plants, terpenes and terpenoids are important mediators of ecological interactions, while some insects use some terpenes as a form of defense. Other functions of terpenoids include cell growth modulation and plant elongation, light harvesting and photoprotection, and membrane permeability and fluidity control.
Araucariaceae is a family of conifers with three living genera, Araucaria, Agathis, and Wollemia. While the family's native distribution is now largely confined to the Southern Hemisphere, except for a few species of Agathis in Malesia, it was formerly widespread in the Northern Hemisphere during the Jurassic and Cretaceous periods.
The Pinaceae, or pine family, are conifer trees or shrubs, including many of the well-known conifers of commercial importance such as cedars, firs, hemlocks, piñons, larches, pines and spruces. The family is included in the order Pinales, formerly known as Coniferales. Pinaceae have distinctive cones with woody scales bearing typically two ovules, and are supported as monophyletic by both morphological trait and genetic analysis. They are the largest extant conifer family in species diversity, with between 220 and 250 species in 11 genera, and the second-largest in geographical range, found in most of the Northern Hemisphere, with the majority of the species in temperate climates, but ranging from subarctic to tropical. The family often forms the dominant component of boreal, coastal, and montane forests. One species, Pinus merkusii, grows just south of the equator in Southeast Asia. Major centres of diversity are found in the mountains of southwest China, Mexico, central Japan, and California.
Antarctic flora are a distinct community of vascular plants which evolved millions of years ago on the supercontinent of Gondwana. Presently, species of Antarctica flora reside on several now separated areas of the Southern Hemisphere, including southern South America, southernmost Africa, New Zealand, Australia, and New Caledonia. Joseph Dalton Hooker was the first to notice similarities in the flora and speculated that Antarctica had served as either a source or a transitional point, and that land masses now separated might formerly have been adjacent.
Pristane is a natural saturated terpenoid alkane obtained primarily from shark liver oil, from which its name is derived. It is also found in the stomach oil of birds in the order Procellariiformes and in mineral oil and some foods. Pristane and phytane are used in the fields of geology and environmental science as biomarkers to characterize origins and evolution of petroleum hydrocarbons and coal.
Cholestane is a saturated tetracyclic triterpene. This 27-carbon biomarker is produced by diagenesis of cholesterol and is one of the most abundant biomarkers in the rock record. Presence of cholestane, its derivatives and related chemical compounds in environmental samples is commonly interpreted as an indicator of animal life and/or traces of O2, as animals are known for exclusively producing cholesterol, and thus has been used to draw evolutionary relationships between ancient organisms of unknown phylogenetic origin and modern metazoan taxa. Cholesterol is made in low abundance by other organisms (e.g., rhodophytes, land plants), but because these other organisms produce a variety of sterols it cannot be used as a conclusive indicator of any one taxon. It is often found in analysis of organic compounds in petroleum.
Phytane is the isoprenoid alkane formed when phytol, a chemical substituent of chlorophyll, loses its hydroxyl group. When phytol loses one carbon atom, it yields pristane. Other sources of phytane and pristane have also been proposed than phytol.
Cheirolepidiaceae is an extinct family of conifers. They first appeared in the Triassic, and were a diverse and common group of conifers during most of the Mesozoic era, primarily at low latitudes, where they often formed a dominant element of the vegetation. They are united by the possession of a distinctive pollen type assigned to the form genus Classopollis The name Frenelopsidaceae or "frenelopsids" has been used for a group of Cheirolepidiaceae with jointed stems, thick internode cuticles, sheathing leaf bases and reduced free leaf tips. The leaf morphology has been noted as being similar to that of halophyte Salicornia. Several members of the family appear to have been adapted for semi-arid and coastal settings, with a high tolerance of saline conditions. Cheirolepidiaceae disappeared from most regions of the world during the Cenomanian-Turonian stages of the Late Cretaceous, but reappeared in South America during the Maastrichtian, the final stage of the Cretaceous, increasing in abundance after the K-Pg extinction and being a prominent part of the regional flora during the Paleocene, before going extinct. Survival into the Paleocene in North America and China has also been suggested based on pollen.
Totarol is a naturally produced diterpene that is bioactive as totarol. It was first isolated by McDowell and Easterfield from the heartwood of Podocarpus totara, a conifer tree found in New Zealand. Podocarpus totara was investigated for unique molecules due to the tree's increased resistance to rotting. Recent studies have confirmed totarol's unique antimicrobial and therapeutic properties. Consequently, totarol is a candidate for a new source of drugs and has been the goal of numerous syntheses.
Taxodone is a naturally occurring diterpenoid found in Taxodium distichum, Rosmarinus officinalis (rosemary), several salvia species and other plants, along with its oxidized rearrangement product, taxodione. Taxodone and taxodione exhibit anticancer, antibacterial, antioxidant, antifungal, insecticide, and antifeedant activities.
Abietane is a diterpene that forms the structural basis for a variety of natural chemical compounds such as abietic acid, carnosic acid, and ferruginol which are collectively known as abietanes or abietane diterpenes.
Levopimaric acid is an abietane-type of diterpene resin acid. It is a major constituent of pine oleoresin with the chemical formula of C20H30O2. In general, the abietene types of diterpene resin acid have various biological activities, such as antibacterial, cardiovascular and antioxidant. Levopimaric acid accounts for about 18 to 25% of pine oleoresin. The production of oleoresin by conifer species is an important component of the defense response against insect attack and fungal pathogen infection.
Incensole is a C20 diterpene alcohol and biomarker for some plants of the Boswellia genus. It, along with its acetate ester incensole acetate, is an abundant component of frankincense, the resin collected from Boswellia trees. Incensole is used archaeologically to assist in identifying trade routes and distinguishing the identity of frankincense from other resins which may have been used together in incense and other salves. Incensole has also been deemed to be an active component in medicinal frankincense.
The Tupuangi Formation is a geological formation in New Zealand, only exposed on Pitt Island in the Chatham Islands. It is the oldest exposed sedimentary unit within the archipelago. It was deposited in terrestrial deltaic to paralic conditions during the Cenomanian to Turonian ages of the Late Cretaceous. During this time period the Chatham Islands were attached to Antarctica within the Antarctic Circle, at approximately 70° to 80° south.
24-Norcholestane, a steroid derivative, is used as a biomarker to constrain the source age of sediments and petroleum through the ratio between 24-norcholestane and 27-norcholestane, especially when used with other age diagnostic biomarkers, like oleanane. While the origins of this compound are still unknown, it is thought that they are derived from diatoms due to their identification in diatom rich sediments and environments. In addition, it was found that 24-norcholestane levels increased in correlation with diatom evolution. Another possible source of 24-norcholestane is from dinoflagellates, albeit to a much lower extent.
Sugiol is a phenolic abietane derivative of ferruginol and can be used as a biomarker for specific families of conifers. The presence of sugiol can be used to identify the Cupressaceae s.1., podocarpaceae, and Araucaraiaceae families of conifers. The polar terpenoids are among the most resistant molecules to degradation besides n-alkanes and fatty acids, affording them high viability as biomarkers due to their longevity in the sedimentary record. Significant amounts of sugiol has been detected in fossil wood dated to the Eocene and Miocene periods, as well as a sample of Protopodocarpoxylon dated to the middle Jurassic.
Lycopane (C40H82; 2,6,10,14,19,23,27,31-octamethyldotriacontane), a 40 carbon alkane isoprenoid, is a widely present biomarker that is often found in anoxic settings. It has been identified in anoxically deposited lacustrine sediments (such as the Messel formation and the Condor oil shale deposit). It has been found in sulfidic and anoxic hypersaline environments (such as the Sdom Formation). It has been widely identified in modern marine sediments, including the Peru upwelling zone, the Black Sea, and the Cariaco Trench. It has been found only rarely in crude oils.
Chamaecydin is a chemical compound with the molecular formula C30H40O3. It is made up of three six-membered rings and two five-membered rings and has one polar hydroxyl functional group. It is well preserved in the rock record and is only found in a specific family of conifers, the swamp cypress subfamily. The presence and abundance of chamaecydin in the rock record can reveal environmental changes in ancient biomes.
{{cite journal}}
: Cite journal requires |journal=
(help)