Free-air gravity anomaly

Last updated

In geophysics, the free-air gravity anomaly, often simply called the free-air anomaly, is the measured gravity anomaly after a free-air correction is applied to account for the elevation at which a measurement is made. It does so by adjusting these measurements of gravity to what would have been measured at a reference level, which is commonly taken as mean sea level or the geoid. [1] [2]

Contents

Applications

Studies of the subsurface structure and composition of the Earth's crust and mantle employ surveys using gravimeters to measure the departure of observed gravity from a theoretical gravity value to identify anomalies due to geologic features below the measurement locations. The computation of anomalies from observed measurements involves the application of corrections that define the resulting anomaly. The free-air anomaly can be used to test for isostatic equilibrium over broad regions.

Survey methods

The free-air correction adjusts measurements of gravity to what would have been measured at mean sea level, that is, on the geoid. The gravitational attraction of earth below the measurement point and above mean sea level is ignored and it is imagined that the observed gravity is measured in air, hence the name. The theoretical gravity value at a location is computed by representing the earth as an ellipsoid that approximates the more complex shape of the geoid. Gravity is computed on the ellipsoid surface using the International Gravity Formula.

For studies of subsurface structure, the free-air anomaly is further adjusted by a correction for the mass below the measurement point and above the reference of mean sea level or a local datum elevation. [3] This defines the Bouguer anomaly.

Calculation

The free-air gravity anomaly is given by the equation: [1]

Here, is observed gravity, is the free-air correction, and is theoretical gravity.

It can be helpful to think of the free-air anomaly as comparing observed gravity to theoretical gravity adjusted up to the measurement point instead of observed gravity adjusted down to the geoid. This avoids any confusion of assuming that the measurement is made in free air. [4] Either way, however, the earth mass between the observation point and the geoid is neglected. The equation for this approach is simply rearranging terms in the first equation of this section so that reference gravity is adjusted and not the observed gravity:

Correction

Gravitational acceleration decreases as an inverse square law with the distance at which the measurement is made from the mass. The free air correction is calculated from Newton's Law, as a rate of change of gravity with distance: [5]

At 45° latitude, mGal/m. [3]

The free-air correction is the amount that must be added to a measurement at height to correct it to the reference level:

Here we have assumed that measurements are made relatively close to the surface so that R does not vary significantly. The value of the free-air correction is positive when measured above the geoid, and negative when measured below. There is the assumption that no mass exists between the observation point and the reference level. The Bouguer and terrain corrections are used to account for this.

Significance

Over the ocean where gravity is measured from ships near sea level, there is no or little free-air correction. In marine gravity surveys, it was observed that the free-air anomaly is positive but very small over the Mid-Ocean Ridges in spite of the fact that these features rise several kilometers above the surrounding seafloor. [6] The small anomaly is explained by the lower density crust and mantle below the ridges resulting from seafloor spreading.  This lower density is an apparent offset to the extra height of the ridge indicating that Mid-Ocean Ridges are in isostatic equilibrium.

See also

Related Research Articles

<span class="mw-page-title-main">Gravitational redshift</span> Shift of wavelength of a photon to longer wavelength

In physics and general relativity, gravitational redshift is the phenomenon that electromagnetic waves or photons travelling out of a gravitational well lose energy. This loss of energy corresponds to a decrease in the wave frequency and increase in the wavelength, known more generally as a redshift. The opposite effect, in which photons gain energy when travelling into a gravitational well, is known as a gravitational blueshift. The effect was first described by Einstein in 1907, eight years before his publication of the full theory of relativity.

<span class="mw-page-title-main">Geodesy</span> Science of measuring the shape, orientation, and gravity of the Earth and other astronomical bodies

Geodesy is the science of measuring and representing the geometry, gravity, and spatial orientation of the Earth in temporally varying 3D. It is called planetary geodesy when studying other astronomical bodies, such as planets or circumplanetary systems.

<span class="mw-page-title-main">Latitude</span> Geographic coordinate specifying north–south position

In geography, latitude is a coordinate that specifies the north–south position of a point on the surface of the Earth or another celestial body. Latitude is given as an angle that ranges from –90° at the south pole to 90° at the north pole, with 0° at the Equator. Lines of constant latitude, or parallels, run east–west as circles parallel to the equator. Latitude and longitude are used together as a coordinate pair to specify a location on the surface of the Earth.

<span class="mw-page-title-main">Earth radius</span> Distance from the Earth surface to a point near its center

Earth radius is the distance from the center of Earth to a point on or near its surface. Approximating the figure of Earth by an Earth spheroid, the radius ranges from a maximum of nearly 6,378 km (3,963 mi) to a minimum of nearly 6,357 km (3,950 mi).

<span class="mw-page-title-main">Geoid</span> Ocean shape without winds and tides

The geoid is the shape that the ocean surface would take under the influence of the gravity of Earth, including gravitational attraction and Earth's rotation, if other influences such as winds and tides were absent. This surface is extended through the continents. According to Gauss, who first described it, it is the "mathematical figure of the Earth", a smooth but irregular surface whose shape results from the uneven distribution of mass within and on the surface of Earth. It can be known only through extensive gravitational measurements and calculations. Despite being an important concept for almost 200 years in the history of geodesy and geophysics, it has been defined to high precision only since advances in satellite geodesy in the late 20th century.

<span class="mw-page-title-main">Physical geodesy</span> Study of the physical properties of the Earths gravity field

Physical geodesy is the study of the physical properties of Earth's gravity and its potential field, with a view to their application in geodesy.

Geopotential is the potential of the Earth's gravity field. For convenience it is often defined as the negative of the potential energy per unit mass, so that the gravity vector is obtained as the gradient of the geopotential, without the negation. In addition to the actual potential, a hypothetical normal potential and their difference, the disturbing potential, can also be defined.

<span class="mw-page-title-main">World Geodetic System</span> Geodetic reference system

The World Geodetic System (WGS) is a standard used in cartography, geodesy, and satellite navigation including GPS. The current version, WGS 84, defines an Earth-centered, Earth-fixed coordinate system and a geodetic datum, and also describes the associated Earth Gravitational Model (EGM) and World Magnetic Model (WMM). The standard is published and maintained by the United States National Geospatial-Intelligence Agency.

<span class="mw-page-title-main">Figure of the Earth</span> Size and shape used to model the Earth for geodesy

In geodesy, the figure of the Earth is the size and shape used to model planet Earth. The kind of figure depends on application, including the precision needed for the model. A spherical Earth is a well-known historical approximation that is satisfactory for geography, astronomy and many other purposes. Several models with greater accuracy have been developed so that coordinate systems can serve the precise needs of navigation, surveying, cadastre, land use, and various other concerns.

<span class="mw-page-title-main">Geodetic Reference System 1980</span> Collection of data on Earths gravity and shape

The Geodetic Reference System 1980 (GRS80) is a geodetic reference system consisting of a global reference ellipsoid and a normal gravity model.

<span class="mw-page-title-main">Bouguer anomaly</span> Type of gravity anomaly

In geodesy and geophysics, the Bouguer anomaly is a gravity anomaly, corrected for the height at which it is measured and the attraction of terrain. The height correction alone gives a free-air gravity anomaly.

The gravity anomaly at a location on the Earth's surface is the difference between the observed value of gravity and the value predicted by a theoretical model. If the Earth were an ideal oblate spheroid of uniform density, then the gravity measured at every point on its surface would be given precisely by a simple algebraic expression. However, the Earth has a rugged surface and non-uniform composition, which distorts its gravitational field. The theoretical value of gravity can be corrected for altitude and the effects of nearby terrain, but it usually still differs slightly from the measured value. This gravity anomaly can reveal the presence of subsurface structures of unusual density. For example, a mass of dense ore below the surface will give a positive anomaly due to the increased gravitational attraction of the ore.

<span class="mw-page-title-main">Vertical deflection</span> Measure of the downward gravitational forces shift due to nearby mass

The vertical deflection (VD) or deflection of the vertical (DoV), also known as deflection of the plumb line and astro-geodetic deflection, is a measure of how far the gravity direction at a given point of interest is rotated by local mass anomalies such as nearby mountains. They are widely used in geodesy, for surveying networks and for geophysical purposes.

<span class="mw-page-title-main">Arc measurement</span>

Arc measurement, sometimes degree measurement, is the astrogeodetic technique of determining the radius of Earth – more specifically, the local Earth radius of curvature of the figure of the Earth – by relating the latitude difference and the geographic distance surveyed between two locations on Earth's surface. The most common variant involves only astronomical latitudes and the meridian arc length and is called meridian arc measurement; other variants may involve only astronomical longitude or both geographic coordinates . Arc measurement campaigns in Europe were the precursors to the International Association of Geodesy (IAG).

Mikhail Sergeyevich Molodenskii was a Russian physical geodesist. He was once said to be "probably the only geodesist who would have deserved a Nobel Prize".

<span class="mw-page-title-main">Gravity of Earth</span>

The gravity of Earth, denoted by g, is the net acceleration that is imparted to objects due to the combined effect of gravitation and the centrifugal force . It is a vector quantity, whose direction coincides with a plumb bob and strength or magnitude is given by the norm .

<span class="mw-page-title-main">Earth ellipsoid</span> Shape of planet Earth

An Earth ellipsoid or Earth spheroid is a mathematical figure approximating the Earth's form, used as a reference frame for computations in geodesy, astronomy, and the geosciences. Various different ellipsoids have been used as approximations.

<span class="mw-page-title-main">Geographical distance</span> Distance measured along the surface of the earth

Geographical distance or geodetic distance is the distance measured along the surface of the earth. The formulae in this article calculate distances between points which are defined by geographical coordinates in terms of latitude and longitude. This distance is an element in solving the second (inverse) geodetic problem.

In geodesy and geophysics, theoretical gravity or normal gravity is an approximation of the true gravity on Earth's surface by means of a mathematical model representing Earth. The most common model of a smoothed Earth is a rotating Earth ellipsoid of revolution.

<span class="mw-page-title-main">Gravity of Mars</span> Gravitational force exerted by the planet Mars

The gravity of Mars is a natural phenomenon, due to the law of gravity, or gravitation, by which all things with mass around the planet Mars are brought towards it. It is weaker than Earth's gravity due to the planet's smaller mass. The average gravitational acceleration on Mars is 3.72076 ms−2 and it varies. In general, topography-controlled isostasy drives the short wavelength free-air gravity anomalies. At the same time, convective flow and finite strength of the mantle lead to long-wavelength planetary-scale free-air gravity anomalies over the entire planet. Variation in crustal thickness, magmatic and volcanic activities, impact-induced Moho-uplift, seasonal variation of polar ice caps, atmospheric mass variation and variation of porosity of the crust could also correlate to the lateral variations. Over the years models consisting of an increasing but limited number of spherical harmonics have been produced. Maps produced have included free-air gravity anomaly, Bouguer gravity anomaly, and crustal thickness. In some areas of Mars there is a correlation between gravity anomalies and topography. Given the known topography, higher resolution gravity field can be inferred. Tidal deformation of Mars by the Sun or Phobos can be measured by its gravity. This reveals how stiff the interior is, and shows that the core is partially liquid. The study of surface gravity of Mars can therefore yield information about different features and provide beneficial information for future landings.

References

  1. 1 2 Fowler, C.M.R. (2005). The Solid Earth: An Introduction to Global Geophysics (2 ed.). Cambridge, UK: Cambridge University Press. pp. 205–206. ISBN   978-0-521-89307-7.
  2. "Introduction to Potential Fields: Gravity" (PDF). U.S. Geological Survey Fact Sheets. FS–239–95. 1997. Retrieved 30 May 2019.
  3. 1 2 Telford, W.M.; Geldart, L.P.; Sheriff, R.E. (1990). Applied Geophysics (2nd ed.). Cambridge: Cambridge University Press. pp.  11–12. ISBN   978-0-521-32693-3.
  4. Ervin, C. Patrick (December 1977). "Theory of the Bouguer Anomaly". Geophysics. 42 (7): 1468. Bibcode:1977Geop...42.1468E. doi:10.1190/1.1440807. ISSN   0016-8033.
  5. Lillie, R.J. (1998). Whole Earth Geophysics: An Introductory Textbook for Geologists and Geophysicists. Prentice Hall. ISBN   978-0-13-490517-4.
  6. Cochran, James R.; Talwani, Manik (1977-09-01). "Free-air gravity anomalies in the world's oceans and their relationship to residual elevation". Geophysical Journal International. 50 (3): 495–552. Bibcode:1977GeoJ...50..495C. doi: 10.1111/j.1365-246X.1977.tb01334.x . ISSN   0956-540X.